

Computer Vision for Photovoltaics

Sen INDUSTRY CONSORTIUN

David Ramirez¹, D. Pujara¹, C. Tepedelenlioglu¹, D. Srinivasan², A. Spanias¹ Arizona State University¹, Poundra²

Problem Statement

- Utility-sized solar arrays require unique management
- Solar panels **degrade** over time and need replacement
- Material **faults** can be a serious safety concern
- **Shading** can cause an exponential loss in power
- Transient **clouds** greatly affects entire power grid
- Predicting faults and forecasting environmental conditions can improve the operation of solar power

Proposed Solution

- Computer vision has utility for solar monitoring
- Thermal/infrared camera for PV fault diagnosis
- 360-camera collects wide field of view
- **Cloud tracking** can forecast power generation
- Irradiance forecasting important for utility-grid
- 3D environment modeling using stationary camera
- Solar path to predict shading geometry

Thermal Imagery Processing

- Automatically isolate panels for analysis
- Rectify using perspective transform
- View-dependent PV cells effects
- Align and combine for super-resolution
- Goal: Machine learning automated PV fault detection and condition grading

Solar facility at ASU Research Park used for

Sensor Signal and Information Processing Center http://engineering.asu.edu/sensip/

heat-sensing infrared camera can capture PV defects and faults not visible to the human eye.