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Abstract—This paper presents algorithms, simulations, and 

results using machine learning and quantum image fusion 

algorithms for radar and remote sensing applications. Previous 

efforts in the classification of synthetic aperture radar (SAR) 

images using quantum machine learning provided encouraging 

results but, nevertheless modest accuracy. In this paper, we 

propose a novel quantum image fusion technique used for 

identifying and classifying objects obtained from C-band SAR 

and optical images. More specifically, we design a four-qubit 

quantum circuit to process the SAR image dataset. This method 

enhances the spectral details otherwise not seen when using the 

raw SAR dataset. In addition to the quantum circuit, we design 

deep neural networks (NN) to improve classification results. The 

Visual Geometry Group 16 (VGG16), a convolutional neural 

network that is sixteen layers deep, is customized and used for 

classification. The merit of quantum fusion as well as the 

promising results in improving the overall system and the 

potential of lowering size, weight, power, and cost (SWaP-C) is 

described. 
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1. INTRODUCTION 

Image fusion is a powerful image processing tool that has 

received significant attention in the field of remote sensing 

and image processing since the mid-nineteen eighties [1]. 

Image fusion enhances our ability to extract meaningful 

information and can be deployed in various applications, 
including medical imaging, aerospace applications, remote 

sensing, military surveillance, and manufacturing flaw 

identification [2,3,4]. 

Related Work 

More recently, quantum image fusion studies have been 

reported along with their feasibility and applications in 

[5,6,7]. In [5], quantum fusion for optical and SAR image 

datasets was presented. The authors used eight different 

quantum fusion techniques to process and fuse their dataset, 

which consisted of 1900 images. 

They used a deep learning model, realized by convolutional 
neural networks, to train the binary set of fused images. In [6] 

quantum wavelet transforms and sum-modified-Laplacian 

rules were used for image fusion. This technique found 

applications in medical image fusion and using visible and 

infrared images to perform fusion. Paper [7] shows 

applications of quantum image processing for CT and MRI 

fusion. 

Previous Work 

In our previous SAR classification efforts [8] we used 

quantum machine learning (QML) for image classification 

tasks. More specifically, our previous work focused on 

developing a hybrid Quantum-classical model that was 

trained on SAR images. Classical computing classification 

using neural networks produced a training accuracy of 

77.19%, while our hybrid quantum classification neural 

network architecture resulted in produced 64.14% accuracy 

[8]. The relatively low accuracy was attributed to the limited 

training of the QCNN algorithm due to restricted computing 

resources. 

Current Work and Contributions 

Our study, reported in this paper, addresses image 

classification using enhanced feature extraction, fusion, and 

the use of single qubit operations where GPU-based quantum 

simulations can provide improved speed. By using a quantum 

circuit to process the SAR dataset and using fusion 

techniques to combine the optical images with the quantum 
processed SAR dataset, we extract more robust features. The 

quantum fused dataset is used to train a deep learning 

algorithm, more specifically, the Visual Geometry Group 16 

(VGG16) [8, 9] architecture. This approach improved 

classification results relative to our previous study [8]. 

Our contributions to this study are: a) improving the quantum 

circuit used for quantum image fusion, b) showing the 
reduction in computational complexity using our proposed 

quantum method, and c) demonstrating a reduction in SWaP-

C. We note that our work is different than [5] in that: we a) 

add unitary gates to our quantum circuit, b) train on a 

different and larger dataset of images, c) use a different deep 

learning model, and d) perform multi-class scene 

classification. 
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The image data used in this study comes from the SEN1-2 

dataset. The dataset consists of 282,384 pairs of image 

patches. The images were collected across the globe and 

include various meteorological seasons [10]. Figure 1 shows 

the paired optical and SAR images for each of the four 

classes. 

Applications and Challenges 

Although this work has several applications, we highlight 

specifically some of the important applications in the 

aerospace industry. By combining the same scene images 

from multisource imagery, we get an enhanced image with 

completeness of spectral information [11]. Fusion can be 

used to enhance certain features not seen in either single 

dataset alone, sharpen images, improve reliability, and 

improve classification [12]. Quantum image processing 
techniques have the potential to extract important details and 

features faster and more accurately. This could be useful in 

object identification and tracking applications [11], image 

segmentation [11], land mapping [13], and regional change 

detection [11]. Quantum image fusion also has the potential 

to lower the size, weight, power, and cost of the system 

(SWaP-C) [13,14]. 

Some of the challenges we faced in our studies are long 

processing times when using quantum fusion techniques, 

limited access to quantum hardware resulting in the use of 

Qiskit simulators, and a small number of qubits. It is expected 

that as progress is made in quantum computing and hardware 

access becomes easier, we will be able to demonstrate a 

quantum advantage in computation processing time. 

This paper is organized as follows, Section 2 describes the 
classical ML model, Section 3 presents the quantum fusion 

design process, Section 4 is our discussion of results, and 

Section 5 presents our conclusions. 

 

2. CLASSICAL IMAGE FUSION 

We began this research by exploring two methods for 

classical image fusion. A VGG16 [8] convolutional neural 

network is used to train and classify the classically fused 

dataset. The results from classical fusion serve as a baseline 

to compare our quantum fusion model to. 

Classical Fusion with Machine Learning 

We use two methods to perform classical image fusion, 

which are described below. We divide and process the optical 

image dataset in terms of three channels, namely, red, green, 

and blue for both methods. 

Method I 

The first classical fusion method used was the Brovey 

Transform (BT) [16]. The BT multiplies each multispectral 

band with the SAR image. Each product is then divided by 

the total sum of the multispectral bands. The three new 

channels are then stacked. The mathematical representation 

is shown in equations 1,2,3, and 4, where R=red channel, 

B=blue channel, G=green channel, S=SAR, and MF = 

Mathematical Fusion. 

 Rednew  =  (
R

(R+G+B)
) × S (1) 

 Bluenew  =  (
B

(R+G+B)
) × S (2) 

 Greennew  =  (
G

(R+G+B)
) × S  (3) 

 MF = stack(Rednew, Bluenew, Greennew)   (4) 

Method II 

The second classical fusion method used is described by 

equations 5,6, and 7 [5]. 

 Rednew  =  (
S+3×R

4
) (5) 

 Bluenew  =  (
S+3×B

4
) (6) 

 Greennew  =  (
S+3×G

4
) (7) 

The new red, green, and blue channels were then stacked. To 

perform image classification, each fusion method was 

processed using a VGG16 architecture. 

Due to longer processing times, we use a subset of the 

original dataset. This subset contains 4,000 quantum fused 

images. To provide a more comprehensive assessment of our 

model, we performed the experiment four times, each time 

using a different subset of images. We then average the 

results. Due to an outlier in the results for the four subsets of 

images, we note we limited our averaging analysis to three 

subsets. The presence of an outlier can be attributed to 

extreme brightness, due to a portion of the dataset coming 

from the summer season. The outlier can be corrected 

 

Figure 1. Paired SAR and Optical Images from 

various scenes: agriculture, grassland, barrenland, 

and urban. 
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through normalization techniques and will be a central focus 

in our future research. 

A brief discussion of our results are as follows. The best 

performing simulation for the classical fusion was Method I, 

achieving a validation accuracy of 93.16% and a training 

accuracy of 94.73%. When averaging, Method I maintained 

the highest validation and training accuracy compared to the 
classical fusion Method II with an average validation 

accuracy of 83.84% and average training accuracy of 

93.09%. Section 

 

3. QUANTUM IMAGE FUSION 

Quantum Fusion Method 

The overall architecture of our quantum fusion model can be 

seen in, Figure 2 which shows the separation of the optical 

image into three channels, the denoising filter, the quantum 

circuit, and the fusion stage. 

We first separated each of our four classes of data, namely, 

agriculture, barrenland, grassland, and urban, and we formed 

two subsets, namely SAR and optical. SAR images have 

speckle effects and are generally complex to process. To 

denoise the SAR dataset, a Lee Filter was used [17]. The Lee 

filter was chosen because it was previously used successfully 

for despeckling and noise removal in the radar image 

processing field [18]. 

We then separate the optical image into three channels: red, 

green, and blue. Then, we process the SAR image with a 4-

qubit quantum circuit. Details of the quantum circuit can be 

seen in Section 3, Quantum Circuit and Feature Extraction. 

Once the SAR channel is processed through the quantum 

circuit, the optical channels are combined with the quantum 

processed SAR channel using a fusion method. To process 

the raw quantum features, we use two different fusion 

processes. We use Method II, which is described in equations 

5,6 and 7, where S is the quantum processed SAR channel. 

The other fusion method used is described below in Method 

III. 

Method III 

Method III uses averaging to perform image fusion [5]. 

Equation 8 describes Method III where R=red, B=blue, 

G=green, and S= Quantum Processed SAR. 

 (
S+R+G+B

4
) (8) 

Once the quantum fusion process is completed, the original 

256x256 image is transformed to a 64x64 quantum processed 

image. We then use deep learning to classify our dataset. The 

VGG16 neural network is discussed further in Section 3. 

Quantum Circuit and Feature Extraction 

We utilized IBM’s Qiskit to program and simulate the 

quantum circuits [19, 20]. To perform quantum fusion, we 

used a 4-qubit quantum circuit that was two layers deep. This 

circuit can be seen in Figure 3. To perform feature extraction, 

we include in our circuit Ry gates, unitary gates, and the 

Pauli-X, Pauli-Y, Pauli-Z, and Hadamard gates [8, 21, 22]. 

The Ry gates perform single-qubit rotations around the y-

axis. We include 4 Ry gates before the unitary gates. Details 
about the Pauli-X, Pauli-Y, Pauli-Z, Hadamard, and Ry gates 

can be found in Table 1. 

The unitary gates are a set of gates that perform rotations 

through weights that change continuously [8, 21]. We note 

that in this research, we wanted to move from an entangled 

circuit previously researched in [8] to another method using 

unitary random gates. The unitary is added to either twirl, 

distribute, or help with gate fidelity. This method is based on 

the Haar measure [23]. We initially ran randomized gates on 

each of the qubits to identify which random set of gates 
worked best for our problem. Once the best set of gates is 

established, the unitary model is saved and used for image 

fusion. After the Ry rotations and unitary gates, we used a 

Pauli-X, Pauli-Y, Pauli-Z, and Hadamard gate. The Pauli-X 

gate performs a single-qubit rotation around the x-axis, the 

Pauli-Y gate performs a single-qubit rotation around the y-

axis, the Pauli-Z gate performs a single-qubit rotation around 

 

Figure 2. Quantum Fusion Architecture with 

Denoising Filter, Quantum Circuit, and Split Optical 

Channels.  

Figure 3. Four Qubit Quantum Circuit (QC) for the 

Processing of SAR Images. 
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the z axis, and the Hadamard gate performs rotations about 

the (𝑥
^

+ 𝑧
^
) √2⁄  axis [24,25]. 

Table 1. Quantum gates used in our studies. 

Gate Representation Matrix 

Pauli-X 

 
 

 

 
(

0 1
1 0

) 

Pauli-Y 

 

 

 

 
(

0 −𝑖
𝑖 0

) 

Pauli-Z 

 

 

 

 
(

1 0
0 1

) 

Hadamard 

 
 

 

 

1

√2
(

1 1
1 −1

) 

Ry Gate 

 

 

 

 
(

cos(
𝜃

2
) −sin(

𝜃

2
)

sin(
𝜃

2
) cos(

𝜃

2
)

) 

After the quantum fusion operations, a 64x64 pixel image is 

produced. This is then processed using the VGG16 neural 

network architecture. Figure 4 shows an example of the 

before and after of our newly processed quantum image for 

one of the classes of images. 

Neural Network Model 

We describe here the use of QML for SAR image 

classification. We note that the merit and tradeoffs of ML and 

QML have also been studied before for various applications 

including audio and image classification, and photovoltaic 

fault detection [24,26,27,29]. For this particular imaging 

study, we describe algorithmic steps as follows. 

After we have carefully preprocessed our images, we use a 

classical neural network architecture to perform the scene 

classification task. In this paper, we use the VGG16 

algorithm to perform scene classification. We chose to use 

the VGG16 because it has previously been used successfully 
in image and vision recognition tasks [29]. The VGG16 

consists of 16 layers with trainable weights, effectively 

mitigating the need for a large number of hyper-parameters 

[30]. The VGG16 architecture can be seen in Figure 5. 

The Keras machine learning package is used to implement 

the quantum circuit and perform machine learning [20]. The 

Adam optimizer is used to adjust the parameters of the 

VGG16 in real-time. This helps improve the speed and 

accuracy of the algorithm [30]. Figure 6 shows the overall 

implementation of our model with quantum fusion. 

In the case of Quantum Method II, the best-performing 

simulation achieved a training accuracy of 92.77% and a 

validation accuracy of 84.04%. For Quantum Method III, the 

best-performing simulation resulted in a training accuracy of 

96.03% and validation accuracy of 93.75%. Using image 

fusion and the VGG16 architecture, we achieved an averaged 

validation accuracy of 86.79% for the Quantum Method III 
and an average validation accuracy of 75.42% for Quantum 

Method II. Detailed results are presented in Section 4. 

Advantages and Challenges 

There were a few challenges encountered when performing 

quantum fusion. We experienced longer runtimes than the 

classical model when performing the fusion. We were also 

limited on the number of qubits we could use. We used the 
Qiskit simulator to simulate the quantum circuit used for the 

processing of the SAR dataset. To simulate operating on real 

quantum hardware and simulate the potential noise effects, 

 

Figure 4. 256x256 SAR Image to 64x64 Quantum 

Processed SAR Image, Quantum Fusion Method III. 

 

Figure 5. VGG16 with 13 Convolutional Layers and 3 Fully Connected Layers [8]. 

X 

Y 

Z 

H 

Ry 
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we used IBM’s Fake Vigo [31]. This is a quantum simulator 

provided by Qiskit for simulating the behavior of the IBM Q 

Vigo quantum device. There was a ~2% decrease in 

classification accuracy when simulating the IBM Q Vigo 

quantum hardware with quantum noise [31,32]. In the next 

step, we will look at the fidelity distribution, and purity of the 

unitary matrix to minimize the fundamental gates for 
quantum hardware compatibility. We will also explore using 

more advanced IBM quantum hardware simulators. 

There are several advantages realized with quantum fusion 

and they are: 

• Reduction in Computational Complexity 

• Reduction in Memory 

• Higher Classification Accuracy 

• Use of lower resolution images 

Overall, we note that quantum fusion led to a reduction in 

computational complexity relative to our previous quantum 

model [8]. Quantum fusion also led to a reduction in memory 
requirements, higher accuracy, and higher classification 

accuracy for lower resolution images. The complexity of the 

quantum fusion algorithm is described in Equation 9. The 

runtime computational complexity of this algorithm is of 

order N and hence, it has a linear relationship with the 

number of qubits used [33,34]. 

 O(N), where N = number of qubits (9) 

The quantum fusion Method III gave us almost 30% higher 

accuracy from our previous quantum model and 

outperformed both classical fusion methods [8]. The 

algorithm demonstrates the ability to achieve high 

classification accuracy with smaller 64x64 images. In 

addition to a reduction in complexity and higher 

classification accuracy, the quantum fusion method resulted 

in a 75% reduction in memory compared to the classical 

fusion method. The reduction in memory coupled with the 

reduced complexity offers several advantages. Furthermore, 
as quantum technology advances, there is promise in the 

optimization and reduction of SWaP-C. Quantum fusion has 

the potential to provide better system performance, lower 

power consumption, and be cost effective. 

4. DISCUSSION OF RESULTS 

We performed classical and quantum fusion and ran our 

dataset through a classical VGG16 algorithm. Quantum 

Fusion Method III performed the best with an average 

validation classification accuracy of 86.79%. The second best 

was the classical fusion Method I with an average validation 

classification accuracy of 83.84%. 

The results reported in Table 2 and Table 3 presents the 

outcomes of three separate model training runs, conducted on 

different subsets of the dataset. Table 4 shows the final 

averaged values for the classical and quantum methods, 

providing a comprehensive assessment of the overall 

performance. 

Table 2. Classical Fusion Results. 

Method Data size (train 

vs validation) 

Accuracy (train vs 

validation 

Method I  Train: 3200  

Validation: 800  

Train: 94.73  

Validation: 93.16  

Method I  Train: 3200  

Validation: 800  

Train: 93.53  

Validation: 85.14  

Method I  Train: 3200  

Validation: 800  

Train: 91  

Validation: 73.23  

Method II  Train: 3200  

Validation: 800  

Train: 84.28  

Validation: 72.3  

Method II  Train: 3200  

Validation: 800  

Train: 83.89  

Validation: 62.25  

Method II  Train: 3200  

Validation: 800  

Train: 88.48  

Validation: 71.79  

 

 

Figure 6. Implementation of our model with Quantum Fusion. 
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Table 3. Quantum Fusion Results. 

Method Data size (train 

vs validation) 

Accuracy (train 

vs validation 

Method II  Train: 3200  

Validation: 800  

Train: 88.51  

Validation: 81.12  

Method II  Train: 3200  

Validation: 800  

Train: 85.56  

Validation: 61.06  

Method II  Train: 3200  

Validation: 800  

Train: 92.77  

Validation: 84.04  

Method III  Train: 3200  

Validation: 800  

Train: 94.83  

Validation: 89.1  

Method III  Train: 3200  

Validation: 800  

Train: 93.06  

Validation: 77.53  

Method III  Train: 3200  

Validation: 800  

Train 96.03  

Validation: 93.75  

 

Table 4. Averaged Classical and Quantum Results. 

Method Data size (train 

vs validation) 

Accuracy (train 

vs validation 

Classical 

Fusion 

Method I  

Train: 3200  

Validation: 800  

Train: 93.09  

Validation: 83.84  

Classical 

Fusion 

Method II  

Train: 3200  

Validation: 800  

Train: 85.55  

Validation: 68.78  

Quantum 

Fusion 

Method II  

Train: 3200  

Validation: 800  

Train: 88.96  

Validation: 75.42  

Quantum 

Fusion 

Method III  

Train: 3200  

Validation: 800  

Train: 94.64  

Validation: 86.79  

Figure 7 and Figure 8 show the training loss and accuracy 

curves for the averaged classical fusion and averaged 

quantum fusion methods. Figure 9 and Figure 10 show the 

validation loss and accuracy curves for the averaged fusion 

methods. 

 

 

Figure 7. VGG16 Training Loss Curve for the two 

classical and two quantum methods described. 

 

Figure 8. VGG16 Training Accuracy Curve for the two 

classical and two quantum methods described. 

 

Figure 9. VGG16 Validation Loss Curve for the two 

classical and two quantum methods described. 

 

Figure 10. VGG16 Validation Accuracy Curve for the 

two classical and two quantum methods described. 
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5. CONCLUSION 

In this work, we proposed a novel way to use quantum 

circuits to process the SAR dataset and perform image fusion 

and classification. We compared the accuracy of the quantum 

image fusion to classical image fusion. We found that the 

overall quantum fusion system led to a reduction in memory 

and has the future potential to lower the SWaP-C metric. 

We observed that smaller image sizes can still result in a high 

accuracy, and the quantum circuit we proposed led to a 

reduction in complexity. Future work includes optimizing the 

current quantum fusion algorithm, train for longer and utilize 

the full dataset, and incorporate quantum value calculations 

into our model [35]. In addition to the above, we look to 

incorporate quantum error mitigation and executing our 

model on quantum hardware.  
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