# iHeart Sensors

# Leslie A. Arriaga

Computer Information Systems + Graphic Design Estrella Mountain Community College June 29, 2023

Mentors: Michael Stanley, Daniel Gulick, Jean Larson, Karl Ernsberger





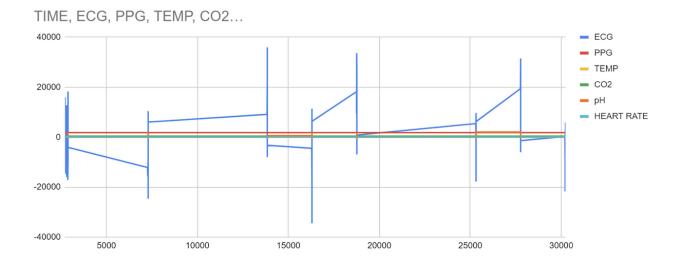


NSF Award 1953745 https://sensip.engineering.asu.edu/ret/

#### **RESEARCH BACKGROUND**

Identifying neurological conditions during the first few hours after birth is crucial for providing timely intervention. Wireless monitoring enhances neonatal care:

Enables healthcare providers to move freely while receiving realtime data. Promotes a positive parental experience by facilitating uninterrupted skinto-skin bonding.

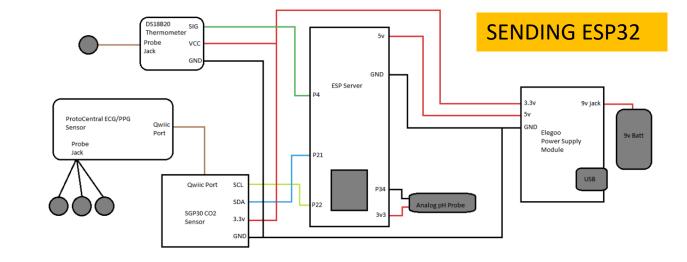



#### **RESEARCH OBJECTIVE**

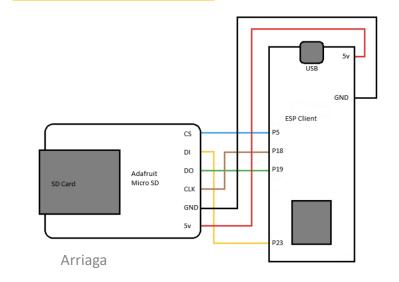
Research the best method to capture and store data wirelessly transmitted from sensors to a computer.

Fundamental for data gathering for next phase analysis, including Machine Learning (ML) techniques for fault detection and classification.

Past failed attempts to save the data to SD cards yielded 50%-90% data loss. SD cards were not fast enough




#### **RESEARCH OBJECTIVE**


# Hardware Modification

This project explores the viability of eliminating the "receiving" ESP32 board and SD Card from the framework by testing the following:

- 1. The "sending" ESP32 and sensors connect via WIFI with the "receiving" ESP32, which is serially connected to the computer.
- 2. The "sending" ESP32 and sensors connect directly to the computer via WiFi.



**RECEIVING ESP32** 



#### **RESEARCH RESULTS**

#### Method 1 – Coding a New Application

The research first explored the feasibility of writing a new computer program with C# and Visual Studio.

- Too difficult to accomplish within the set timeframe
- Limited coding skills

#### Method 2 – Using an Existing Application

Research pivoted to explore existing methods that could meet the objective.

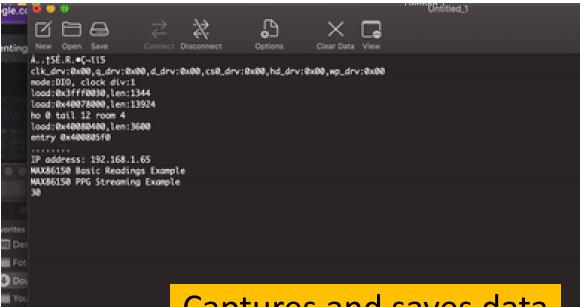




T. EM

Dar ML Esc TP Ora Inte

Euro EM Dro Airi


#### **RESEARCH RESULTS**

CoolTerm is a serial port terminal application geared towards hobbyists and professionals with a need to exchange data with hardware connected to

serial ports.



CoolTerm



Captures and saves data

I

Sel usbeerial-0001 / 115200 8-N-1 Connected 00:00:09, 335 / 0 byter

7

#### **RESEARCH RESULTS**

#### PREPARATION

- Installing the Arduino IDE
- Understanding the original JSON code installed in the ESP32 boards
- Update the code to include my new WiFi information

# **COOLTERM SETUP**

- Selecting the correct port serial or WiFi
- Baudrate 115,200 (matches ESP32 code)

#### First Goal

• Successful re-creation of the original hardware setup.

#### **RESEARCH RESULTS**

4 different trials conducted to ensure data is captured and saved properly

**TESTING** 

| Test | Hardware                               | Code                                                                    | Connection                                                                                       | Results                                                  | Visual |
|------|----------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------------------------|--------|
| 1    | Single ESP32                           | Dummy code<br>uploaded to<br>ESP32 to simulate<br>sensor<br>information | ESP32 serially<br>connects to the<br>computer                                                    | Success<br>CoolTerm<br>captures and<br>saves the<br>data | ESP32  |
| 2    | 1 ESP32<br>connected to<br>all sensors | Original JSON<br>activating all<br>sensors                              | ESP32 serially<br>connects to the<br>computer                                                    | Success                                                  | ESP32  |
| 3    | 2 ESP32 + all<br>sensors               | Original JSON on<br>both ESP32s                                         | Sensors+ESP32<br>wirelessly connects<br>to receiving ESP32,<br>serially connected<br>to computer | Success                                                  | ESP32  |
| 4    | 1 ESP32<br>connected to<br>all sensors | Original JSON<br>activating all<br>sensors                              | Sensor ESP32<br>wirelessly connects<br>to the computer                                           | TCP CoolTerm<br>Connection<br>failure                    |        |

#### **RESEARCH RESULTS**



### **Excel Macro: File Prep Option 1**

Two options to organize the original JSON data (highlighted above) in preparation for ML

Instructions (

#### **RESEARCH RESULTS**

#### {"timer":61291,"ECG":2955,"PPG":163,"T":25,"CO2":402,"pH":0}

#### [6]: import pandas as pd import json

file\_path = 'text.txt' # Replace with the actual file path

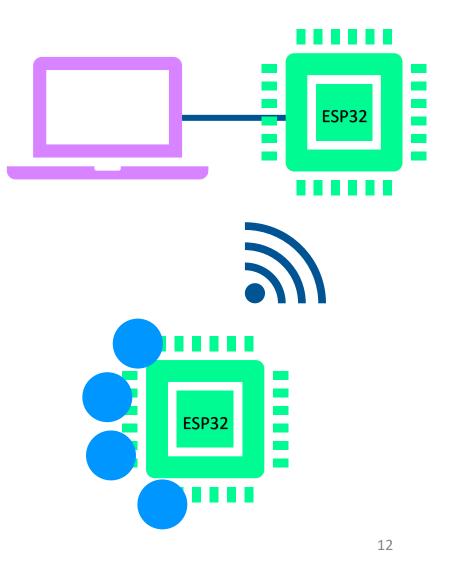
data\_list = [] # List to store individual JSON statements

with open(file\_path, 'r') as file:
 for line in file:
 json\_data = json.loads(line.strip()) # Load JSON from each line
 data\_list.append(json\_data) # Append JSON to the list

df = pd.DataFrame(data\_list) # Create a DataFrame from the list of JSON statements

display(df)

|     | timer | ECG    | PPG | т  | CO2 | рН |
|-----|-------|--------|-----|----|-----|----|
| 0   | 61255 | 16878  | 163 | 25 | 402 | 0  |
| 1   | 61255 | 554    | 163 | 25 | 402 | 0  |
| 2   | 61255 | -11854 | 163 | 25 | 402 | 0  |
| 3   | 61271 | -17594 | 159 | 25 | 402 | 0  |
| 4   | 61271 | -15088 | 159 | 25 | 402 | 0  |
|     |       |        |     |    |     |    |
| 732 | 69369 | -12475 | 159 | 25 | 406 | 0  |
| 733 | 69369 | -10764 | 159 | 25 | 406 | 0  |
| 734 | 69389 | 1985   | 163 | 25 | 406 | 0  |
| 735 | 69389 | 15617  | 163 | 25 | 406 | 0  |
| 736 | 69389 | 23915  | 163 | 25 | 406 | 0  |


#### Python: File Prep Option 2

Two options to organize the original JSON data (highlighted above) in preparation for ML analysis.

#### **RESEARCH CONCLUSION**

# **Objective accomplished!**

- 1. CoolTerm captures and stores wirelessly transmitted data from the sensors (see diagram).
- 2. Unable to eliminate the second ESP32 board.
- 3. Both the Excel Macro and Python code developed are essential for future ML data analysis.



# IHEART SENSORS

INTRO TO EMBEDDED SENSORS

PROFESSOR LESLIE ARRIAGA CIS 105

#### **LESSON DESCRIPTION**

# iHeart Sensors

Students are introduced to embedded sensors through a micro lecture and various hands-on activities/assignments.

#### Learning Outcome

- 1 Recall and define key vocabulary words related to embedded sensors.
- 2 Utilize the downloaded app to capture their own heartbeats using embedded sensors.
- Explain the concept of at least one embedded 3 sensor, its functionalities, and evaluate the limitations of using the embedded sensor in a real-life scenario.
- Apply data visualization techniques in Excel to 4 plot the captured heartbeat data.
- 5 Generate a 3D object and print it in the Makerspace.
- Design and deliver a slide presentation 6 showcasing their knowledge of embedded sensors, the heartbeat graph, and their 3D printed creation.


#### **LESSON OBJECTIVES**

# **In-Class Activities**

# **#1 Micro Lecture**

- What are sensors?
- Vocabulary
- Showcase my SenSip experience

### **#2 Activity – Vocab Game**



#### **LESSON OBJECTIVES**

# **In-Class Activities**

# **#3 Activity - Heartrate**

- Students download
   Phyphox App
- Students take own ECG with phone accelerometer
- Export data



#### **LESSON OBJECTIVES**

# Assignments

#### #1

# Real World Talk (RWT) – Show Me the Sensor

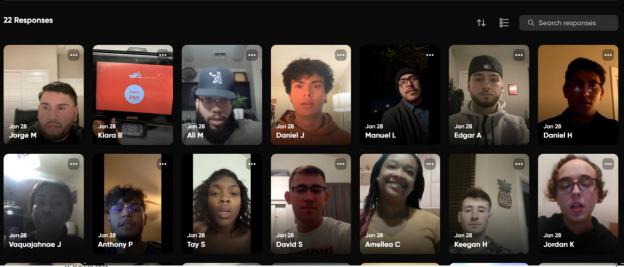
Flip App

#### **Real World Talk - Tech In Our Lives**

#### Week 2 - Real World Talk Let's connect our course learning to our everyday lives.

TOPIC

How is technology changing our everyday lives? Make a video by using your camera (like the Welcome Video) and show us something technological that is changing the way you do life (fairly simple since it's all around us).


RULES

Video must be taken by you (no uploaded online videos).

You cannot post something someone else has posted. Make sure...

#### Show more





Arriaga



#### **LESSON OBJECTIVES**

# Assignments

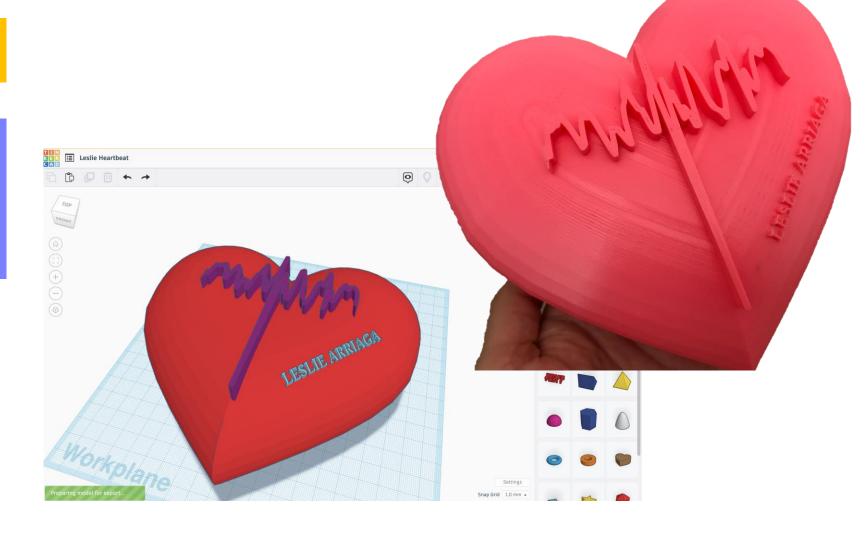
# #2 Graph heartrate data

#### Excel App



LESLIE ARRIAGA

| A          | В            | с            | D                        | E          | F            | G      | н     |                           |                                         | к                   | L                     | м           | N                | 0           | Р        |
|------------|--------------|--------------|--------------------------|------------|--------------|--------|-------|---------------------------|-----------------------------------------|---------------------|-----------------------|-------------|------------------|-------------|----------|
| Time (s)   |              |              | (Linear Acceleration z ( |            | eleration (n | n/s^2) |       |                           |                                         |                     |                       |             |                  |             |          |
| 0.17632817 | -0.026355155 | 0.005487027  |                          |            |              |        |       |                           |                                         |                     |                       |             |                  |             |          |
| 0.18633717 | -0.032556127 | 0.009930911  | -0.00446318              | 0.03432848 |              |        |       |                           |                                         |                     |                       |             |                  |             |          |
| 0.19634717 | -0.019226815 | 0.013716983  |                          |            |              |        |       |                           |                                         |                     |                       |             |                  |             |          |
| 0.20638717 | -0.036398917 | 0.022670825  | -0.044218984             | 0.0615968  |              |        |       |                           |                                         |                     |                       |             |                  |             |          |
| 0.21639717 | -0.042518029 | 0.020209147  | -0.040314798             | 0.06197964 |              |        |       |                           |                                         |                     |                       |             |                  |             |          |
| 0.22640717 | -0.047223283 | 0.005759507  | -0.024258928             | 0.05340137 |              |        |       |                           |                                         |                     |                       |             |                  |             |          |
| 0.23641717 | -0.024747756 | 0.008000745  | -0.013735694             | 0.02941314 |              |        |       |                           |                                         |                     |                       |             |                  |             |          |
| 0.24642617 | -0.004070832 | -0.011616079 | 0.011154149              | 0.01661084 |              |        |       |                           |                                         |                     |                       |             |                  |             |          |
| 0.25643617 | -0.004444469 | -0.012845748 | 0.019389952              | 0.02367988 |              |        |       |                           | 1001                                    |                     |                       |             | a                |             | П        |
| 0.26644617 | -0.007399651 | -0.010135564 | -0.009347359             | 0.01564793 |              |        |       |                           | ARRI                                    | AGA - Line          | ar Accelerati         | on x (m/s^  | 2)               |             |          |
| 0.27645617 | -0.039269316 | -0.027814035 | -0.017962354             | 0.05136483 |              |        | 0.1   |                           |                                         |                     |                       |             |                  |             |          |
| 0.28646517 | -0.059329943 | -0.022319407 |                          |            |              |        |       |                           |                                         |                     |                       |             |                  |             |          |
| 0.29647517 | -0.065746093 | -0.002431272 |                          |            |              |        |       |                           |                                         |                     |                       | 1           |                  |             | 1        |
| 0.30648517 | -0.076580983 | 0.000903395  |                          |            |              |        | 0.05  | 1                         | 1                                       |                     |                       |             |                  | -           |          |
| 0.31649517 | -0.069188349 | -0.003577911 |                          |            |              |        | 11    |                           |                                         |                     |                       |             | 11               | 1 4         | N I      |
| 0.32650517 | -0.052292819 | 0.000426847  |                          |            |              |        |       |                           | 14.1                                    | 1 11                |                       | 1. 1        |                  |             |          |
| 0.33651417 | -0.039203242 | 0.013497713  |                          |            |              |        | 0     | <ul> <li>10.10</li> </ul> | ABAN I AB                               | ALL AL ALLA         | MILLAN                | 1 . 10 4    | 1 4 1 1 1        | 4 1.1.1     |          |
| 0.34652417 | -0.017575561 | 0.021108449  |                          |            |              |        | 124   |                           |                                         | 10 17 19 19         | 5 5 4 5 5 5           | 利 音 昭 慶 慶 長 | 7 10 20 20 20    | 夏西岛自己度      | 19 10 10 |
| 0.35653417 | 0.028923837  | -0.009326309 |                          |            |              |        |       |                           | A Maria Carde                           | In the second shift | a what have all       |             | 1 to 1 to 1 to 1 |             |          |
| 0.36654417 | 0.040253987  | -0.04554981  |                          | 0.06577269 |              |        | -0.05 |                           | /////////////////////////////////////// |                     | 1 S 1 S 1             | 11.1.1      | 1 11             | 1.1.1.1.1.1 |          |
| 0.376579   | -0.177974042 | -0.057260029 |                          |            |              |        | 10200 |                           |                                         |                     |                       | 1 . a       |                  |             |          |
| 0.386589   | -0.153757213 | -0.01771297  |                          | 0.16180062 |              |        | 1     |                           |                                         |                     |                       |             |                  |             |          |
| 0.396598   | -0.001594536 | 0.028335607  |                          |            |              |        | 0.1   | _                         | _                                       |                     |                       |             |                  |             | Ö_       |
| 0.406608   | 0.014359007  | 0.055273145  |                          |            |              |        |       |                           |                                         |                     |                       |             |                  |             |          |
| 0.416618   | 0.02060208   | -0.019990461 |                          |            |              |        |       |                           |                                         |                     |                       |             |                  |             |          |
| 0.426628   | -0.019862992 | -0.054425299 |                          |            |              |        | -0.15 |                           |                                         |                     |                       |             |                  |             |          |
| 0.436637   | -0.021141193 | -0.031001937 |                          |            |              |        |       |                           |                                         |                     |                       |             |                  | 1           | 10       |
| 0.446647   | -0.02374145  | -0.030108483 |                          |            |              |        |       |                           |                                         |                     |                       |             |                  |             |          |
| 0.456657   | -0.049993109 | -0.03151006  |                          |            |              |        | -0.2  |                           |                                         |                     |                       |             |                  |             |          |
| 0.466667   | -0.036751505 | -0.027470219 |                          |            |              |        |       |                           |                                         |                     |                       |             |                  |             |          |
| 0.476677   | -0.004796471 | -0.027498286 |                          |            |              |        |       |                           | a de la                                 |                     |                       |             |                  |             |          |
| 0.486686   | 0.029706194  | -0.021697848 |                          |            |              |        | -0.25 |                           |                                         |                     |                       |             |                  |             |          |
| 0.496696   | 0.038151913  | -0.020531913 |                          |            |              |        |       |                           |                                         |                     |                       |             |                  |             |          |
| 0.506706   | 0.020212655  | -0.024907385 |                          |            |              |        |       |                           |                                         |                     |                       |             |                  |             |          |
| 0.516716   | -0.008094885 | -0.016969205 |                          |            |              |        | -0.3  |                           |                                         |                     |                       |             |                  |             |          |
| 0.526725   | -0.0321936   | -0.004563167 |                          |            |              |        |       |                           |                                         | 1 las               | ear Acceleration x (r | 0/00.73     |                  |             |          |
| 0.536766   | -0.035780282 | -0.003750404 |                          |            |              |        |       |                           |                                         | Line                | sar Acceleration x (r | 1/521       |                  |             |          |
| 0.546775   | -0.031711205 | -0.019306921 |                          |            |              | 1      | 2     |                           |                                         |                     | 0                     |             |                  |             | , 0      |
| 0.556785   | -0.044974444 | -0.024148416 |                          |            |              |        |       |                           |                                         |                     |                       |             |                  |             |          |
| 0.566795   | -0.033591669 | -0.022552711 |                          |            |              |        |       |                           |                                         |                     |                       |             |                  |             |          |
| 0.576805   | -0.007916545 | -0.039902569 |                          |            |              |        |       |                           |                                         |                     |                       |             |                  |             |          |
| 0.586814   | -0.001626111 | -0.042972357 |                          |            |              |        |       |                           |                                         |                     |                       |             |                  |             |          |
| 0.596824   | -0.028464831 | -0.047260121 |                          |            |              |        |       |                           |                                         |                     |                       |             |                  |             |          |
| 0.606834   | -0.019995139 | -0.018881829 |                          |            |              |        |       |                           |                                         |                     |                       |             |                  |             |          |
| 0.616844   | -0.005798099 | -0.002862212 | 0.025446205              | 0.0262549  |              |        |       |                           |                                         |                     |                       |             |                  |             |          |

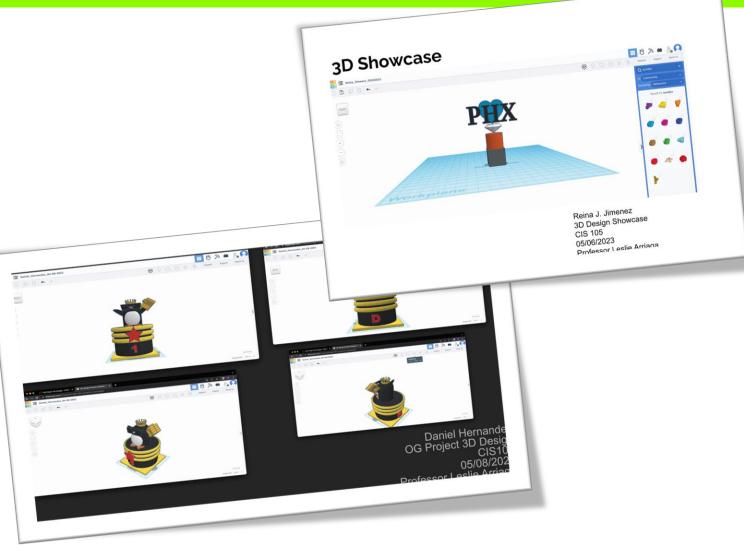

One cycle needed for 3D Print

#### **LESSON OBJECTIVES**

# Assignments

#3 (optional) Prepare Heartbeat Cycle to 3D print

**Tinkercad App** 




#### **LESSON OBJECTIVES**

# Assignments

# #4 Project Showcase

PowerPoint App



#### **CONCLUDING REMARKS**

# Project Next Steps

- Sensors to send data wirelessly direct to the computer
- Use sensors to obtain vital signs data
- ML analysis

#### Lesson Next Steps

- Transfer content to my LMS
- Teach the students and do the activities

Key research - skills gained (theory/software)?

- Experience with Arduino IDE, JSON, Python, sensors, ESP32
- Understanding of sensors
- Introduction to machine learning

#### Self-assessment – what did you get out of this experience?

- Research experience
- Learned about the other research at ASU
- Met some cool peeps in my cohort

## Program Observations/Recommendations

- Mentor introduction 1 week before start of program
- Assign projects on day 1 or before
  - Didn't know what we were doing for 2 weeks
  - Start project work on day 1
- 1st week of lectures consider learning experience



Sensor, Signal and Information Processing Center

Thank you! Questions?

Leslie Arriaga Leslie.arriaga@estrellamountain.edu