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Abstract—Solar power is becoming a common replacement for
non-renewable resources such as fossil fuels. In order to optimize
energy production of arrays, it is necessary to identify faults
with accuracy. A solution to this problem is the use of machine
learning to identify and classify solar array faults. When given
features such as voltage, temperature, and irradiance from faulty
and standard operating panels, a machine learning algorithm can
be trained to predict if a solar panel is faulty as well as the type
of fault the solar panel is experiencing. Using classical machine
learning algorithms as a baseline, experimenting with quantum
machine learning may provide valuable data in determining
current quantum effectiveness. This paper explores a comparison
of classical and quantum machine learning in order to determine
effective solutions for fault detection.

Index Terms—Machine Learning, Solar Panels, Quantum,
Neural Network, Photovoltaics

I. INTRODUCTION

In order to curb the use of limited and harmful fossil fuels, a
transition to reliable, renewable energy sources has become an
increasingly pressing objective. One such renewable solution is
capturing solar energy through photovoltaic arrays. Harnessing
solar energy through the use of PV arrays is becoming an
affordable method to generate renewable energy due to the
decreasing cost of producing solar panels [1]. This lowering
financial entry paired with solar power’s large technical poten-
tial [2] gives solar focus as the leading means of generating
renewable energy.

A difficulty in utilizing PV arrays is ensuring the system
is running at maximum efficiency. PV array faults present an
obstacle in ensuring peak efficiency. In order to monitor PV
panel inputs and outputs, Smart Monitoring Devices (SMDs)
can be used. Data from these SMDs can be collected and fed
to a machine learning algorithm trained for the classification
of faults such as a neural network [3]–[6]. Arrays can then
dynamically reconfigure their connection topology according
to the fault [7]–[9].

Fig. 1. Figure taken from [7] displaying K-means clusters of faults.

Possible supervised machine learning algorithms to explore
include logistic regression, support vector machines (SVMs),
and neural networks. Past works have found these algorithms
to be effective in solving classification problems [10]. In par-
ticular, SVMs and neural networks may prove to be effective
in solving problems with higher-dimensional data. Quantum
algorithms based on these classical models have seen success
using hybrid methods [11]–[13].

Quantum solutions can be used to process much more
complex algorithms that may be unfeasible when performed
on a classical machine which may lead to more accurate pre-
dictions. Additionally, the nature of quantum particles allows
for more efficient finding of global minima in cost functions
through the event of quantum tunneling [14].

Fig. 2. Figure taken from [14] displaying quantum tunneling for cost
functions.

This research proposes that quantum machine learning is
an avenue worth exploring for photovoltaic fault detection.
Quantum machine learning is an up-and-coming field that will
prove essential to solving complex problems with large data
sets which may prove useful in the area of fault detection.
Hence, it is necessary to gauge the current effectiveness of
quantum algorithms in solving these problems.

II. DATA

The data used in this research was provided by Arizona
State University. It is a simulated solar array dataset with ten
inputs: Watts of energy produced, maximum voltage under
load, maximum current under load, cell temperature, watts per
meter squared, fill factor, gamma, peak maximum power, open
circuit voltage, and short circuit current. Each set of inputs has
a corresponding label split between four faults and standard
test condition data. From these five labels, short circuit was
chosen to be tested against the standard test condition data
for the purpose of binary classification. Before being used for
training, the data underwent pre-processing to normalize the
input data.



III. CLASSICAL MODELS

To establish a baseline for future quantum tests, three
classical models were implemented using Sklearn’s machine
learning packages within Python [15]. Each model was eval-
uated using its accuracy and f1-score.

The first model implemented was a logistic regression
model. The hyper-parameters adjusted were the solver, the
maximum iterations, and the penalty. The parameters that gave
the best results were the saga solver with 5000 maximum
iterations and the l1 penalty. The final test accuracy was
measured to be 88.76%. The model displayed a slight tendency
toward producing false negatives with an f1-score of 88.74.

Fig. 3. Confusion matrix for logistic regression model.

The next model implemented was a state vector machine.
The hyper-parameters adjusted were the kernel and the maxi-
mum iterations. The parameters that gave the best results were
the RBF kernel with 5000 maximum iterations. The final test
accuracy measured to be 91.29%. The model displayed a slight
tendency toward producing false negatives with an f1-score of
91.25.

Fig. 4. Confusion matrix for support vector machine.

The final classical model tested was a neural network. The
hyper-parameters adjusted were the number of hidden layers,
the number of nodes, the activation function, and the maximum
iterations. To find the optimal number of hidden layers and

nodes a grid search was performed. The number of hidden
layers within the search was constricted between one and two
for the purpose of streamlining future quantum tests.

Fig. 5. Grid Search results for neural network.

The hyper-parameters that gave the best results were two
hidden layers each with 300 nodes using the relu activation
function and the adam solver with 300 max iterations. The
final test accuracy measured to be around 95%. The model
displayed a very slight tendency toward producing false posi-
tives with an f1-score of 94.97.

Fig. 6. Confusion matrix for neural network.

IV. QUANTUM MODELS

Tests using quantum models were performed using a com-
bination of Qiskit and PyTorch python packages. Two models
were tested: a quantum support vector machine and a quantum
neural network (QNN). All tests were performed on quantum
simulators. The same data was used as in the previous classical
tests. As this is not data in quantum space, the data was first
converted into Hilbert space before being used in the quantum
circuit. After running through the circuit, the data is then
converted back to classical data for evaluation.



Fig. 7. Diagram of hybrid algorithm.

The first model tested was a quantum support vector ma-
chine. The hyper-parameters adjusted were the number of q-
bits, number of shots, and the quantum simulator. The best
results for the QSVM used 2 q-bits, 1024 shots, and the
state-vector simulator. The QSVM had a final test accuracy
of 93.58% with an f1-score of .94 with a slight tendency to
produce false positives. The simulator produced results in good
time allowing it to use a larger number of shots. Adjusting q-
bits and shots above this amount produced negligible changes
in results.

Fig. 8. Confusion matrix for quantum support vector machine.

The final model tested was a quantum neural network. The
hyper-parameters adjusted were the number of q-bits, number
of shots, the quantum simulator, the learning rate, and the
activation function. The results for the QNN were obtained
with 2 q-bits using 256 shots on the QASM simulator with
a learning rate .03 and the sigmoid activation function. The
QNN had a final test accuracy of around 55-60% with an f1-
score of around .21 with a heavy tendency toward producing
false negatives. The number of shots, q-bits, and hidden layers
were limited due to the long run times of the simulator.
Additionally, the number of hidden layers was chosen to match
the parameters of the classical neural network.

Fig. 9. Confusion matrix for quantum support vector machine.

V. CONCLUSION AND FUTURE WORK

Of the classical models tested, the neural network produced
the best results. However, the QSVM vastly outperforms
against the QNN. Adjusting hyper-parameters and modifying
the data set including dropping less relevant features failed
to improve the accuracy. Previous research using QNNs and
solar data produced results with accuracies over 90% [12]. It
is possible that similar results are not being achieved due to
the smaller size of our data set or because of sacrifices made
to achieve reasonable run-times.

Fig. 10. Feature ranking of the solar data set according to ’most important’.

Contrary to the QNN, the QSVM produced results that
surpassed its classical counterpart. The performance of the
QSVM shows the possibility that a quantum model may be
able to perform as well as or better than a classical model. The
good performance of the QSVM and classical neural network
suggest that if the quantum neural network’s problems can be
diagnosed, it may be the best solution for this problem.

For future work, researchers should perform tests using
real solar array data as opposed to a simulated, hand-picked
data set. Additionally, future tests should be performed on
real quantum computers instead of quantum simulators. Re-
searchers should also conduct future tests using Monte Carlo
Simulations rather than taking a simple average.
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