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Abstract—With the world’s growing energy crisis 
becoming a more prevalent issue, solar energy has risen 
as the leading sustainable and cost-effective replacement 
for fossil fuels. As is the case with all emerging industries, 
progress is accompanied by new barriers that must be 
addressed. In this case, the efficiency of solar panels 
requires constant monitoring of the voltage, current, 
temperature and irradiance. This project aims to 
recognize faults and classify them as soiling, degraded 
modules, shading or arc faults by characterizing these 
features as the inputs in artificial neural network models 
then comparing the results with those of a quantum 
model.    
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I. INTRODUCTION 
The constantly increasing nature of the world’s demand 

for energy coupled with limited natural resources results in a 
growing need for renewable energy sources. Approximately 
1.8×1014 kW of solar energy is intercepted by the Earth, 
making it the most abundant source of renewable energy [1]. 
Efficient photovoltaic systems have the potential to serve as a 
viable solution to the energy crisis.  

 PV technology directly converts sunlight into electricity 
and the power generated by the individual cells is determined 
by the intensity of the light. Despite the statistic that PV 
installations currently provide only 0.1% of the world’s total 
electricity generation, PV technology is predicted to deliver 
around 1081 GW by 2030 [2]. This significant measurement 
of growth further establishes the need for development in 
monitoring and fault detection technologies to minimize the 
solar energy wasted in the process. Failure to do so has the 
potential to compromise the entire solar array system.  

While multiple faults can occur, this project will 
specifically focus on detecting soiling. This fault results from 
particles like dirt, snow or dust that cover the surface of PV 
modules and obstruct the amount of solar energy delivered. 
The solution to this problem is the consistent cleaning of the 
modules. Studies have shown that annual losses of soiling 
range from 1.5% to 6.2% depending on the location of the 
plant [3].  

 
Figure 1: dust intensity around the world [3] 

One of the main difficulties of detecting this fault stems 
from the immense amount of data that must be analyzed. 
Faults are identified by a combination of various 
measurements and must be properly diagnosed. For example, 
soiling will result in measured irradiance aligned with 

standard testing conditions, however measured power 
produced will be significantly lower [4]. Machine learning 
systems allow us to recognize patterns in this data and are 24.6 
percent more precise than human inspected methods [5]. In 
this project, I will run the data through a logistic regression, 
support vector machine and neural network models to analyze 
test data and determine which is most accurate for the data set 
provided. Then, I will evaluate those results in comparison 
with the quantum version of that specific model. Quantum 
algorithms have the potential to drastically increase our 
powers of computing and solve problems of a much greater 
scale. However, currently this field is undergoing much 
progress and quantum algorithms are not yet ideal for all types 
of data. The purpose of this comparison is to determine 
whether quantum algorithms are suitable for addressing this 
problem.  

II. DATA 
The simulated data used in this research went through 

multiple cleaning and formatting processes prior to being 
inputted into the regression model. We started by loading 
the solar data into Google Colab in arrays X and Y. Next, 
we separated the data from the labels and converted it from 
a Pandas data frame to a NumPy array. We then converted 
the one-hot encoding labels into categorical labels for ease 
of use and normalized the data to serve as a viable input into 
the model. Finally, the data was divided into a 70/15/15 
train/validation/test split.  

III. LOGISTIC REGRESSION 
This project first trained SKLearn’s Logistic Regression 

model to detect solar soiling faults in the system. This 
specific model performs at a relatively faster speed than 
other supervised classification techniques, however, it can 
tend to be less accurate due to its simplistic nature [6]. This 
model was optimized using the ‘saga’ solver with 5000 
maximum iterations to produce a test accuracy of 97.94%. 

 
Figure 2: logistic regression confusion matrix 

IV. SUPPORT VECTOR MACHINES 
This project then trained SKLearn’s Support Vector 

Machine model to detect solar soiling faults in the system. 
This model separates two classes by creating a decision 
boundary and aims to maximize the margin between this 
hyperplane and data [7]. While this method has its 



advantages, it is not suitable for large databases due to their 
greater amounts of noise [8]. To optimize this model, we 
held break ties as true and used the ‘linear’ kernel with 5000 
maximum iterations. This yielded a test accuracy of 98.17% 
as displayed in the confusion matrix below.   

 
Figure 3: support vector machine confusion matrix 

V. ARTIFICIAL NEURAL NETWORK 
The classical portion of this project then trained 

SKLearn’s Artificial Neural Network model to detect solar 
soiling faults in the system. This model required a higher 
level of training due to its susceptibility to overfitting [9]. 
We used a one layer neural network with 250 hidden nodes 
as our model structure then optimized it using the logistic 
activation function, the ‘adam’ solver and 100 maximum 
iterations. Finally, the model resulted in the highest test 
accuracy of 98.34%. 

  
Figure 4: artificial neural network confusion matrix 

VI. QUANTUM NEURAL NETWORK MODEL 
 In theory, quantum computers are capable of solving 
certain types of problems at a faster speed than classical 
computers. Researchers are working to determine whether this 
is the case in the field of machine learning where a computer 
is trained to solve practically relevant problems. Preliminary 
studies have begun to show that, when compared to classical 
neural networks, quantum models were able to achieve higher 
effective dimensions [10]. This can be observed in Figure 5 
below. 

 
Figure 5: normalized effective dimension [10] 

 Effective dimensions are an essential indicator of how 
trainable a neural network model is and measures how capable 
a model is of adapting to new data [10]. Thus, a higher 
proportion of optimized parameters were being actively used 
in the quantum neural network and lowering the training loss 
as compared to other models.  

 
Figure 6: training loss [10] 

 In this project, we wanted to expand upon these results and 
conduct our own research to determine whether there was a 
quantum advantage to neural network models.  

We used a four layer neural network with 50 epochs and 
a learning rate of 0.01. The first was a conventional neural 
network layer with 10 inputs and 4 outputs. This was 
followed by a two layer quantum neural network and the last 
layer was a conventional layer with 1 input and 2 outputs. 
Lastly, a sigmoid activation function was applied to the 
data. This optimization resulted in a 61.3% accuracy as 
displayed in the confusion matrix below. 

 
Figure 7: quantum neural network confusion matrix 



 It should be noted, however, that past research in this field 
produced successful quantum results of ~90% accuracy which 
is significantly higher than the results produced in this project 
[11]. Thus, we know that our main issue came from the 
optimization of the algorithm rather than the failure of 
quantum neural networks to address this issue.  

VII. QUANTUM SUPPORT VECTOR MACHINES MODEL 
 The relatively lower results we faced with the quantum 
neural network model lead us to create a quantum SVM model 
for comparison. Quantum SVM models work by converting 
the classical data into quantum states using quantum feature 
maps and then build a kernel using the quantum states [12]. 
This kernel matrix allows the quantum model to be trained in 
the same way as the classical model.  

 
Figure 8: SVM kernel  

 This model yielded more accurate results- specifically a 
test accuracy of 97.5% as displayed in the confusion matrix 
below.    

 
Figure 9: quantum neural network confusion matrix 

VIII. CLASSICAL VERSUS QUANTUM RESULTS 
 When comparing classical and quantum results, a 
significant difference can be observed. There were a number 
of challenges with optimizing the quantum machine learning 
algorithms and aspects that made them inefficient as the 
primary method of addressing this problem. QML algorithms 
required more processing power and had longer execution 
times. Furthermore, we were unable to run the full dataset 
without the program crashing.   

 Prior research in the field has shown that quantum SVM 
showed a significant advantage over classical SVM for multi-

class classification problems but not for binary classification 
problems [13]. This research project reached the same 
conclusion and showed similar results for classical and 
quantum SVM algorithms.   

 In terms of quantum neural networks, prior research 
allows us to conclude that quantum neural networks have the 
potential to yield higher results than those of this study. Thus, 
quantum neural networks have the capability of producing a 
higher accuracy than classical models but there are still 
limitations on our ability to mimic these results.  

IX. CONCLUSION AND FURTURE WORK 
 Preliminary quantum neural networks results indicated a 
need for improvement and further optimization. Potential 
future work would be to continue to improve the parameters 
of the model and aim for a higher accuracy. Furthermore, this 
project was predominantly run on Google Colab and would 
have been benefitted by being run on an actual quantum 
computer. This is something we hope to do in the future in 
order to lessen the run time and determine the potentially 
higher accuracy this will yield.  
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