
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Solar Array Fault Detection Using Classical and
Quantum Support Vector Classifiers

Niki Kyriacou
Department of Physics

Arizona State University
Tempe, USA

nkyriaco@asu.edu
placeholder

Andreas Spanias
Department of Electrical, Computer

and Energy Engineering
Arizona State University

Tempe, USA
spanias@asu.edu

Glen Uehara
Department of Electrical, Computer

and Energy Engineering
Arizona State University

Tempe, USA
guehara@asu.edu

Lenos Hadjidemetriou
KIOS Center

University of Cyprus
Nicosia, Cyprus

hadjidemetriou.lenos@ucy.ac.cy

Sameeksha Katoch
Department of Electrical, Computer

and Energy Engineering
Arizona State University

Tempe, USA
skatoch1@asu.edu

Maria Michael
KIOS Center

University of Cyprus
Nicosia, Cyprus

mmichael@ucy.ac.cy

Abstract— Photovoltaic arrays require real-time monitoring
and maintenance for optimal performance. Detection and
identification of faults are critical to this maintenance. The four
most commonly occurring faults are shading, degraded
modules, soiling, and short circuits. This paper compares the
effectiveness of classical and quantum support vector classifiers
in identifying these faults.

Keywords— photovoltaic systems, fault detection, quantum
machine learning, support vector classifier

I. INTRODUCTION
As the renewable energy industry expands, the presence of

photovoltaic systems is becoming more common. To ensure
that investments in PV systems are protected, it is necessary
to have systems in place to monitor and maintain their
performance. One major part of this maintenance is fault
detection. The most common faults in PV systems are
shading, degraded modules, soiling, and short circuits [1].

SenSIP Lab has done several studies demonstrating the
effective use of advanced neural networks to accurately detect
and identify these commonly occurring faults to a high degree
of accuracy [2-7]. The primary indicators used in this fault
detection were voltage, current, temperature, and irradiance
[2].

Figure 1: Photos of PV arrays containing the four most common faults [1].

 More recently, SenSIP Lab has published a study
comparing the effectiveness of PV fault detection using
classical neural networks and simulated quantum neural
networks [6]. Although the study did not demonstrate

significant improvement in accuracy using quantum neural
networks, it was posited that developing higher resolution
quantum circuits could potentially provide an advantage over
classical neural networks [8].

 Additional research into quantum machine learning has
demonstrated that QML algorithms are well suited to solving
decision making problems and identifying patterns [9-11].
Furthermore, it has long been established that a support vector
machine (SVM) could be used for classification on a quantum
computer [12]. More recent work has even demonstrated that
quantum SVMs have outperformed classical ones [13].

 This research investigates the training of simulated
quantum support vector classifiers using the Qiskit platform
and comparing the results to those of classical support vector
classifiers.

II. DATA

The data used in this research was obtained from the
previous study done by SenSIP Lab published in Machine
learning for solar array monitoring, optimization, and
control [1]. This is an evenly distributed classification dataset
containing five panel classes associated with different data
features. The five classes are soiled, shaded, degraded, short
circuit (SC), and standard test conditions (STC).

The specified data includes ten major features which were
used to for fault detection. These features include power
output, temperature, irradiance, fill factor, open circuit
voltage (VOC), short-circuit current (ISC), maximum voltage
(VMP), maximum power (PMP), maximum current (IMP),
and gamma (𝛾𝛾) which is the ratio of power over irradiance.

III. CLASSICAL ALGORITHMS
 The first part of this project trained SKLearn’s Support
Vector Classifier (SVC) to categorize the data into one of the
five classes [14]. Before using the data to train the model, the
data underwent pre-processing. SKLearn’s StandardScaler
was used to standardize the dataset and SKLearn’s univariate
feature selection was used to select the four most significant
features [15]. Finally, the data was divided into an 80/20
train/test split.

 A SVC creates a hyperplane to separate data belonging
to different classes. SVCs utilize kernel functions to assist
with classification. SKLearn has four main kernel functions
that can be selected: linear, polynomial, radial basis function
(RBF), and sigmoid.

 Simulations were run with each of the four kernels, and
the kernels were evaluated on the basis of precision, recall,
and F-score. The RBF kernel performed the best of the four.

Figure 2: Graph depicting precision, recall, and F-score values for four
different kernel types for a multi-class SVC.

 The SVC was then trained using the RBF kernel to sort
the data into one of the five classes.

Figure 3: Confusion matrix depicting the results of the multi-class SVC
training.

 After training the SVC, it was able to predict the class of
that data with almost 87% accuracy. This score would serve
as the metric for the quantum machine learning algorithm to
either meet or exceed.

 However, due to limited availability of processing
power, the quantum machine learning algorithm would only
be able to perform binary classification. Therefore, to
establish another basis of comparison, another SVC was
trained to separate the data into two classes: faulty and not
faulty.

 The same process was followed as the multi-class SVC,
and simulations were run with all four kernels. The RBF
kernel performed the best of the four again, although by a
much smaller margin this time.

Figure 4: Graph depicting precision, recall, and F-score values for four
different kernel types for a binary SVC.

 After training the SVC, it was able to classify the data as
faulty or not faulty with an accuracy of almost 88%.

Figure 5: Confusion matrix depicting the results of the binary SVC training.

 Consequently, the aim for the quantum machine learning
algorithm was to meet or exceed a classification accuracy of
87-88%.

IV. QUANTUM ALGORITHMS
 The second part of this project used Qiskit software to
simulate quantum machine learning algorithms. The intention
was to evaluate whether there could be an empirical quantum
advantage.

A. Quantum Support Vector Classifier

 Before the data could be used to train the model, it
underwent pre-processing. SKLearn’s MinMaxScaler was
used to standardize the dataset, and SKLearn’s univariate
feature selection was used to select the two most significant

features. Due to limited processing power, a function was
included to randomly select half of the dataset to be used in
the algorithm. Finally, the data was divided into an 80/20
train/test split.

Figure 6: Depiction of the process to use the quantum support vector classifier.

 To use the dataset in a quantum machine learning
algorithm, a feature map was used to map the data to the
quantum Hilbert space [16].

 This algorithm used Qiskit’s ZZFeatureMap with two
reps and linear entanglement [17]. Two qubits were used for
this algorithm due to limited computer processing power.

Figure 7: Example of a two-qubit feature map used in Qiskit.

 Once the feature map was applied, the quantum support
vector classifier (QSVC) was trained and then the results
were measured and evaluated. Qiskit’s QSVC algorithm is
an extension of SKLearn’s classical SVC and therefore also
works with its methods and metrics for evaluation [18].

 The QSVC was first trained to perform binary
classification of faulty or not faulty. Qiskit’s Statevector
simulator was used because it had the fastest processing
speed, and the algorithm was run with 1024 shots.

 After training, the QSVC was able to classify the data
as faulty or not faulty with an accuracy of approximately
90%.

Figure 8: Confusion matrix depicting the results of the binary QSVC training.

 Since the QSVC was only able to perform binary
classification, the same parameters were used for each of the
five original classes of shaded, degraded, soiled, SC, or STC.

 The QSVC was able to classify the degraded panels with
approximately 99% accuracy, the shaded panels with
approximately 91% accuracy, the soiled panels with
approximately 97% accuracy, the SC panels with
approximately 95% accuracy, and the STC panels with
approximately 91% accuracy.

Figure 9: Graph depicting classification score for the six different binary
QSVC results.

 Qiskit’s QSVC algorithm provided encouraging results.
However, the long processing times and the inability to use
the entire dataset led to the exploration of another Qiskit
algorithm.

B. Quantum Support Vector Classifier Pegasos

 The next algorithm this project explored was Qiskit’s
QSVC Pegasos, which was expected to train faster than the
QSVC algorithm [19]. The algorithm was based on the paper
by Shalev-Shwartz et al. titled Pegasos: Primal Estimated
sub-GrAdient SOlver for SVM [20].

 The data pre-processing for this algorithm included the
use of SKLearn’s MinMaxScaler to standardize the dataset,
and the use of SKLearn’s univariate feature selection to select
the four most significant features. It was again necessary to
include a function was to randomly select half of the dataset
to be used in the algorithm. Finally, the data was divided into
an 80/20 train/test split.

 This algorithm used Qiskit’s ZFeatureMap with two
qubits and two reps [21]. QSVC Pegasos was also run on the
Statevector simulator. The standard value of 100 was used for
the number of steps (𝜏𝜏) and a value of 1000 was used for the
regularization hyperparameter (𝐶𝐶) [19].

 Just as with the QSVC algorithm, the QSVC Pegasos
algorithm was first trained for the binary classification of fault

or not faulty and then trained to perform binary classification
for each of the original five classes.

 After training, the algorithm was able to classify the data
as faulty or not faulty with an accuracy of approximately 83%.

Figure 10: Confusion matrix depicting the results of the binary QSVC Pegasos
training.

 Additionally, the QSVC Pegasos algorithm was able to
classify the degraded panels with approximately 82%
accuracy, the shaded panels with approximately 85%
accuracy, the soiled panels with approximately 69% accuracy,
the SC panels with approximately 53% accuracy, and the STC
panels with approximately 81% accuracy.

Figure 10: Graph depicting classification score for the six different binary
QSVC Pegasos results.

V. CONCLUSION AND FUTURE WORK
 Overall, the results were mixed. The performance of the
algorithms from best to least accuracy was the QSVC
algorithm, the classical SVC algorithm, and finally the
QSVC Pegasos algorithm.

 It is important to note that both quantum machine
learning algorithms were only run with random selections of
half of the original dataset due to limitations in computer
processing power. Furthermore, the quantum algorithms

were limited to binary classification while the classical SVC
allowed the use of multiple classes.

 For future work, it would be beneficial to run the
algorithms on more powerful computers to evaluate the
change in performance when using the entire dataset.
Additionally, since Qiskit only simulates the use of a
quantum computer, it would be useful to compare the results
using an actual quantum computer. Finally, the dataset used
was simulated, evenly distributed, and well-behaved. It
would be advantageous to evaluate these algorithms with real
world data to better understand their performance.

ACKNOWLEDGMENT
 This project was sponsored by National Science
Foundation Award 1854273.

REFERENCES
[1] S. Rao, S. Katoch, V. Narayanaswamy, G. Muniraju, C.

Tepedelenlioglu, A. Spanias, P. Turaga, R. Ayyanar, and
D. Srinivasan, “Machine learning for solar array
monitoring, optimization, and control,” Synthesis
Lectures on Power Electronics, vol. 7, no. 1, pp. 1–91,
2020.

[2] S. Rao, A. Spanias, C. Tepedelenliglu, "Solar Array
Fault Detection using Neural Networks", IEEE
International Conference on Industrial Cyber-Physical
Systems (ICPS), Taipei, May 2019.

[3] S. Rao, G. Muniraju, C. Tepedelenlioglu,
D. Srinivasan, G. Tamizhmani and A. Spanias,
"Dropout and Pruned Neural Networks for Fault
Classification in Photovoltaic Arrays," IEEE Access,
2021.

[4] V. Narayanaswamy, R. Ayyanar, A. Spanias, C.
Tepedelenlioglu, "Connection Topology Optimization
in PV Arrays using Neural Networks'," IEEE
International Conference on Industrial Cyber-Physical
Systems (ICPS), Taipei, May 2019.

[5] K. Jaskie, J. Martin, and A. Spanias, “PV Fault Detection
using Positive Unlabeled Learning,” Applied Sciences,
vol. 11, Jun. 2021.

[6] H. Braun, S. Buddha, V. Krishnan, C. Tepedelenlioglu,
A. Spanias, S.i Takada, T. Takehara, M. Banavar, and T.
Yeider., Signal Processing for Solar Array Monitoring,
Fault Detection, and Optimization, Synthesis Lectures
on Power Electronics, Morgan & Claypool, Book, 1-
111 pages, ISBN 978-1608459483, Sep. 2012.

[7] H. Braun, S. T. Buddha, V. Krishnan, C.
Tepedelenlioglu, A. Spanias, M. Banavar, and D.
Srinivansan, “Topology reconfiguration for optimization
of photovoltaic array output,” Elsevier Sustainable
Energy, Grids and Networks (SEGAN), pp. 58-69, Vol.
6, June 2016.

[8] G. Uehara, S. Rao, M. Dobson, C. Tepedelenlioglu and
Andreas Spanias, "Quantum Neural Network Parameter
Estimation for Photovoltaic Fault,” Proc. IEEE IISA
2021, July 2021.

[9] R. Divya and J. Dinesh Peter, "Quantum Machine
Learning: A comprehensive review on optimization of
machine learning algorithms," 2021 Fourth
International Conference on Microelectronics, Signals
& Systems (ICMSS), 2021, pp. 1-6, doi:
10.1109/ICMSS53060.2021.9673630.

[10] H. Yano, Y. Suzuki, K. M. Itoh, R. Raymond and N.
Yamamoto, "Efficient Discrete Feature Encoding for
Variational Quantum Classifier," in IEEE Transactions
on Quantum Engineering, vol. 2, pp. 1-14, 2021, Art no.
3103214, doi: 10.1109/TQE.2021.3103050.

[11] Hong, Y.Y. and Pula, R.A., 2022. Methods of
photovoltaic fault detection and classification: A review.
Energy Reports, 8, pp.5898-5929.

[12] P. Rebentrost, M. Mohseni and S. Lloyd, "Quantum
Support Vector Machine for Big Data Classification",
2013. [Online]. Available:
https://doi.org/10.1103/PhysRevLett.113.130503.

[13] S. Kavitha and N. Kaulgud, "Quantum machine learning
for support vector machine classification", Evolutionary
Intelligence, 2022. Available: 10.1007/s12065-022-
00756-5.

[14] "sklearn.svm.SVC", scikit-learn. [Online]. Available:
https://scikit-
learn.org/stable/modules/generated/sklearn.svm.SVC.ht
ml.

[15] "sklearn.feature_selection.SelectKBest", scikit-learn.
[Online]. Available: https://scikit-
learn.org/stable/modules/generated/sklearn.feature_sele
ction.SelectKBest.html.

[16] M. Schuld and N. Killoran, “Quantum machine learning
in feature Hilbert spaces,” arXiv.org, 19-Mar-2018.
[Online]. Available: https://arxiv.org/abs/1803.07128.

[17] "ZZFeatureMap — Qiskit 0.37.1
documentation", Qiskit.org. [Online]. Available:
https://qiskit.org/documentation/stubs/qiskit.circuit.libra
ry.ZZFeatureMap.html.

[18] "QSVC — Qiskit Machine Learning 0.4.0
documentation", Qiskit.org. [Online]. Available:
https://qiskit.org/documentation/machine-

learning/stubs/qiskit_machine_learning.algorithms.QS
VC.html.

[19] "Pegasos Quantum Support Vector Classifier — Qiskit
Machine Learning 0.4.0 documentation", Qiskit.org.
[Online]. Available:
https://qiskit.org/documentation/machine-
learning/tutorials/07_pegasos_qsvc.html.

[20] S. Shalev-Shwartz, Y. Singer, N. Srebro and A. Cotter,
"Pegasos: primal estimated sub-gradient solver for
SVM", Mathematical Programming, vol. 127, no. 1, pp.
3-30, 2010. Available: 10.1007/s10107-010-0420-4.

[21] "ZFeatureMap — Qiskit 0.37.1
documentation", Qiskit.org, 2022. [Online]. Available:
https://qiskit.org/documentation/stubs/qiskit.circuit.libra
ry.ZFeatureMap.html.

IEEE conference templates contain guidance text for
composing and formatting conference papers. Please
ensure that all template text is removed from your

conference paper prior to submission to the
conference. Failure to remove template text from

your paper may result in your paper not being
published.

	I. Introduction
	II. DATA
	III. Classical algorithms
	IV. Quantum algorithms
	A. Quantum Support Vector Classifier
	B. Quantum Support Vector Classifier Pegasos

	V. Conclusion and future work
	Acknowledgment
	References

