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Abstract— Photovoltaic arrays require real-time monitoring 
and maintenance for optimal performance. Detection and 
identification of faults are critical to this maintenance. The four 
most commonly occurring faults are shading, degraded 
modules, soiling, and short circuits. This paper compares the 
effectiveness of classical and quantum support vector classifiers 
in identifying these faults. 
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I. INTRODUCTION 
As the renewable energy industry expands, the presence of 

photovoltaic systems is becoming more common. To ensure 
that investments in PV systems are protected, it is necessary 
to have systems in place to monitor and maintain their 
performance. One major part of this maintenance is fault 
detection. The most common faults in PV systems are 
shading, degraded modules, soiling, and short circuits [1].  

SenSIP Lab has done several studies demonstrating the 
effective use of advanced neural networks to accurately detect 
and identify these commonly occurring faults to a high degree 
of accuracy [2-7]. The primary indicators used in this fault 
detection were voltage, current, temperature, and irradiance 
[2]. 

 

 
Figure 1: Photos of PV arrays containing the four most common faults [1]. 

 More recently, SenSIP Lab has published a study 
comparing the effectiveness of PV fault detection using 
classical neural networks and simulated quantum neural 
networks [6]. Although the study did not demonstrate 

significant improvement in accuracy using quantum neural 
networks, it was posited that developing higher resolution 
quantum circuits could potentially provide an advantage over 
classical neural networks [8]. 

 Additional research into quantum machine learning has 
demonstrated that QML algorithms are well suited to solving 
decision making problems and identifying patterns [9-11]. 
Furthermore, it has long been established that a support vector 
machine (SVM) could be used for classification on a quantum 
computer [12]. More recent work has even demonstrated that 
quantum SVMs have outperformed classical ones [13]. 

 This research investigates the training of simulated 
quantum support vector classifiers using the Qiskit platform 
and comparing the results to those of classical support vector 
classifiers. 

II. DATA 

The data used in this research was obtained from the 
previous study done by SenSIP Lab published in Machine 
learning for solar array monitoring, optimization, and 
control [1]. This is an evenly distributed classification dataset 
containing five panel classes associated with different data 
features. The five classes are soiled, shaded, degraded, short 
circuit (SC), and standard test conditions (STC).  

The specified data includes ten major features which were 
used to for fault detection. These features include power 
output, temperature, irradiance, fill factor, open circuit 
voltage (VOC), short-circuit current (ISC), maximum voltage 
(VMP), maximum power (PMP), maximum current (IMP), 
and gamma (𝛾𝛾) which is the ratio of power over irradiance.  

III. CLASSICAL ALGORITHMS 
      The first part of this project trained SKLearn’s Support 
Vector Classifier (SVC) to categorize the data into one of the 
five classes [14]. Before using the data to train the model, the 
data underwent pre-processing. SKLearn’s StandardScaler 
was used to standardize the dataset and SKLearn’s univariate 
feature selection was used to select the four most significant 
features [15]. Finally, the data was divided into an 80/20 
train/test split.  
 



       A SVC creates a hyperplane to separate data belonging 
to different classes. SVCs utilize kernel functions to assist 
with classification. SKLearn has four main kernel functions 
that can be selected: linear, polynomial, radial basis function 
(RBF), and sigmoid.  
 
       Simulations were run with each of the four kernels, and 
the kernels were evaluated on the basis of precision, recall, 
and F-score. The RBF kernel performed the best of the four. 
 
 

 
Figure 2: Graph depicting precision, recall, and F-score values for four 
different kernel types for a multi-class SVC. 

 

       The SVC was then trained using the RBF kernel to sort 
the data into one of the five classes. 

 

 
Figure 3: Confusion matrix depicting the results of the multi-class SVC 
training.   

 
       After training the SVC, it was able to predict the class of 
that data with almost 87% accuracy. This score would serve 
as the metric for the quantum machine learning algorithm to 
either meet or exceed. 
 
       However, due to limited availability of processing 
power, the quantum machine learning algorithm would only 
be able to perform binary classification. Therefore, to 
establish another basis of comparison, another SVC was 
trained to separate the data into two classes: faulty and not 
faulty. 

 
       The same process was followed as the multi-class SVC, 
and simulations were run with all four kernels. The RBF 
kernel performed the best of the four again, although by a 
much smaller margin this time. 
 

 
Figure 4: Graph depicting precision, recall, and F-score values for four 
different kernel types for a binary SVC. 

 

       After training the SVC, it was able to classify the data as 
faulty or not faulty with an accuracy of almost 88%.  

 

Figure 5: Confusion matrix depicting the results of the binary SVC training.   

 
       Consequently, the aim for the quantum machine learning 
algorithm was to meet or exceed a classification accuracy of 
87-88%. 

IV. QUANTUM ALGORITHMS 
       The second part of this project used Qiskit software to 
simulate quantum machine learning algorithms. The intention 
was to evaluate whether there could be an empirical quantum 
advantage. 
 

A. Quantum Support Vector Classifier 
 
       Before the data could be used to train the model, it 
underwent pre-processing. SKLearn’s MinMaxScaler was 
used to standardize the dataset, and SKLearn’s univariate 
feature selection was used to select the two most significant 



features. Due to limited processing power, a function was 
included to randomly select half of the dataset to be used in 
the algorithm. Finally, the data was divided into an 80/20 
train/test split.  
 

 
Figure 6: Depiction of the process to use the quantum support vector classifier. 

 
       To use the dataset in a quantum machine learning 
algorithm, a feature map was used to map the data to the 
quantum Hilbert space [16].  
 
       This algorithm used Qiskit’s ZZFeatureMap with two 
reps and linear entanglement [17]. Two qubits were used for 
this algorithm due to limited computer processing power. 
 

 
Figure 7: Example of a two-qubit feature map used in Qiskit. 

 

       Once the feature map was applied, the quantum support 
vector classifier (QSVC) was trained and then the results 
were measured and evaluated. Qiskit’s QSVC algorithm is 
an extension of SKLearn’s classical SVC and therefore also 
works with its methods and metrics for evaluation [18]. 
 
       The QSVC was first trained to perform binary 
classification of faulty or not faulty. Qiskit’s Statevector 
simulator was used because it had the fastest processing 
speed, and the algorithm was run with 1024 shots. 
 
       After training, the QSVC was able to classify the data 
as faulty or not faulty with an accuracy of approximately 
90%. 

 
Figure 8: Confusion matrix depicting the results of the binary QSVC training. 

 

       Since the QSVC was only able to perform binary 
classification, the same parameters were used for each of the 
five original classes of shaded, degraded, soiled, SC, or STC. 

       The QSVC was able to classify the degraded panels with 
approximately 99% accuracy, the shaded panels with 
approximately 91% accuracy, the soiled panels with 
approximately 97% accuracy, the SC panels with 
approximately 95% accuracy, and the STC panels with 
approximately 91% accuracy. 

 

 
Figure 9: Graph depicting classification score for the six different binary 
QSVC results.  

  

       Qiskit’s QSVC algorithm provided encouraging results. 
However, the long processing times and the inability to use 
the entire dataset led to the exploration of another Qiskit 
algorithm. 

 

B. Quantum Support Vector Classifier Pegasos 
 
       The next algorithm this project explored was Qiskit’s 
QSVC Pegasos, which was expected to train faster than the 
QSVC algorithm [19]. The algorithm was based on the paper 
by Shalev-Shwartz et al. titled Pegasos: Primal Estimated 
sub-GrAdient SOlver for SVM [20].  
 
       The data pre-processing for this algorithm included the 
use of SKLearn’s MinMaxScaler to standardize the dataset, 
and the use of SKLearn’s univariate feature selection to select 
the four most significant features. It was again necessary to 
include a function was to randomly select half of the dataset 
to be used in the algorithm. Finally, the data was divided into 
an 80/20 train/test split. 
 
       This algorithm used Qiskit’s ZFeatureMap with two 
qubits and two reps [21]. QSVC Pegasos was also run on the 
Statevector simulator. The standard value of 100 was used for 
the number of steps (𝜏𝜏) and a value of 1000 was used for the 
regularization hyperparameter (𝐶𝐶) [19].  
  
       Just as with the QSVC algorithm, the QSVC Pegasos 
algorithm was first trained for the binary classification of fault 



or not faulty and then trained to perform binary classification 
for each of the original five classes.  

       After training, the algorithm was able to classify the data 
as faulty or not faulty with an accuracy of approximately 83%. 

 

 
Figure 10: Confusion matrix depicting the results of the binary QSVC Pegasos 
training. 

 
       Additionally, the QSVC Pegasos algorithm was able to 
classify the degraded panels with approximately 82% 
accuracy, the shaded panels with approximately 85% 
accuracy, the soiled panels with approximately 69% accuracy, 
the SC panels with approximately 53% accuracy, and the STC 
panels with approximately 81% accuracy. 

 
Figure 10: Graph depicting classification score for the six different binary 
QSVC Pegasos results.  

 

V. CONCLUSION AND FUTURE WORK 
       Overall, the results were mixed. The performance of the 
algorithms from best to least accuracy was the QSVC 
algorithm, the classical SVC algorithm, and finally the 
QSVC Pegasos algorithm.  
 
       It is important to note that both quantum machine 
learning algorithms were only run with random selections of 
half of the original dataset due to limitations in computer 
processing power. Furthermore, the quantum algorithms 

were limited to binary classification while the classical SVC 
allowed the use of multiple classes. 
 
       For future work, it would be beneficial to run the 
algorithms on more powerful computers to evaluate the 
change in performance when using the entire dataset. 
Additionally, since Qiskit only simulates the use of a 
quantum computer, it would be useful to compare the results 
using an actual quantum computer. Finally, the dataset used 
was simulated, evenly distributed, and well-behaved. It 
would be advantageous to evaluate these algorithms with real 
world data to better understand their performance.  
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