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Abstract—Solar panels are becoming more common for every-
day energy production, however there are drawbacks that inhibit
them from reaching their optimal potential. One major drawback
comes from a variety of faults within utility scale solar panel
arrays. Using machine learning algorithms, engineers are able
to drastically reduce the time for detecting and repairing solar
panels faults. The focus of this project is to use machine learning
to detect shading effects on utility scale PV arrays. The first
phase of this SenSIP-KIOS collaborative IRES project included
training at ASU on a variety of machine learning algorithms
and software. In this phase of the project, it became evident that
there are challenges in using the machine learning (ML) models
for detecting shading. I began my studies on ML by considering
three classical models, namely, used: Logistic Regression (LR),
Support Vector Machine (SVM), and Neural Networks (NN).
The three methods were compared using solar fault data and
results were produced in terms of prediction accuracy. I then
explored quantum machine learning models and trained and
tested the quantum model. The accuracy of the classical and
quantum models are compared to see which model is optimal
for classifying shaded solar array faults.

Index Terms—machine learning, quantum, neural networks,
solar panels, optimization,

I. INTRODUCTION

The transition to renewable energy is imperative to our
society’s future. Solar energy holds a promising future in
renewable energy sector, but still has ways to go before taking
over our current, harmful energy sources. In order to fast-track
the transition, solar energy needs to prove itself as a more
viable energy source. There are many aspects to look at when
trying to reach the maximum energy output. This research
project does not look at the inner workings and structure of the
solar panels, but instead looks at the type of faults that occur
in real time which prevent the solar panels from reaching their
maximum energy potential.

To detect faults, smart monitoring devices (SMD) peri-
odically send data of each solar panel’s voltage, current,
irradiance, and temperature. With this data, machine learning
algorithms are trained to predict the type of fault, and then
tested to see the accuracy of the model. There are three
subsections of machine learning: supervised learning, unsu-

pervised learning, and reinforcement learning. This project
uses supervised learning. When the training data points are
labeled as their correct class, supervised learning is used
to train models to classify the test data. The data provided
for this project is labeled with its corresponding features,
hence supervised learning is used [1]. Within the code, there
are hyperparameters used that can alter the efficiency of the
system. The type of solver, type of kernel, number of hidden
layers, and number of nodes are examples of hyperparameters.
Different models of machine learning are presented resulting
in different hyperparameters being used. Playing with these
hyperparameters allows models to minimize their bias and
variance. Having low bias underfits the data, which makes the
data too generalized. Having high variance overfits the data,
which means there is too much noise the algorithm uses for
fitting the data [2].

There are five classifications of faults looked at within the
SenSIP IRES: soiled, degraded, shaded, short circuited, and
standard testing conditions (STC). Each fault holds different
values in terms of voltage, current, irradiance, and temperature.
For example, if the irradiance and temperature are near STC
but the current is very low, it is highly likely that the fault
is a short circuit [1]. This report holds emphasis toward the
shaded fault.

Fig. 1. Shaded Solar Panel
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For the first part of this project, three classical models are
used to classify shaded faults: LR, SVM, and NN. The three
are then compared to see which classical model is best suited
for shaded fault detection.

For the second part of the project, a quantum support vector
machine (QSVM) and quantum neural network (QNN) are
trained and tested to classify the shaded fault. This is done
with the Qiskit library. Qiskit allows users to run quantum
simulations without the need for expensive quantum hardware.
These results are compared with their classical model coun-
terpart.

To show the results of each model, a confusion matrix is
generated. A confusion matrix shows how many times a class
was predicted by the model and if the class prediction is true or
false. The confusion matrix gives the reader an understanding
on how accurate the model is. It is also useful for its abilities
to show where the model is strong or weak. These can be
seen with four categories: true positives, false positives, true
negatives, false negatives. In terms of shaded fault detection, a
true positive occurs when the model correctly predicts a shaded
fault. A false positive occurs when the model predicts that
there is a shaded fault when in actuality there is no fault. A true
negative is when the model correctly predicts there is no fault,
and a false negative is when there is a shaded fault and the
model predicted that there is no fault [3]. Fig. 2 is an example
of a confusion matrix from the Machine Learning for Solar
Array Monitoring, Optimization, and Control publication.

Fig. 2. Confusion Matrix Example
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Quantum computing offers superior capabilities over classi-

cal computing. They hold much greater storage, and easily
process and store data. Quantum computing is great for
optimization problems, making it attractive to use for this
project. However, this study does not use a massive database,
which is better suited for quantum. Still, quantum algorithms
have outperformed classical models in many areas [4]. This
project will see how quantum and classical compare when
classifying fault detection.

Currently, quantum systems have work to be done in order
to maximize their proficiency in prediction models. Still, this
research gives insight to how the two methods compare as of
present day technology.

II. CLASSICAL MODELS

All of the classical models used 70% of the data for training
and the remainder for testing.

A. Logistic Regression

The logistic regression machine learning algorithm is the
first method tested for fault detection classification. This model
uses the sigmoid function (1) for binary classification. The
purpose of the function is to create a threshold that if crossed
can determine that the data now in a certain class [5].

f(x) =
1

1 + e−θx
(1)

The Cyprus IRES team optimized hyperparameters for a
specific fault and found the probability for correctly classi-
fying their chosen fault. In this report, the shaded class was
optimized and found unimpressive results when compared to
the other optimized classes from the IRES team.

Fig. 3. Confusion Matrix for Shaded Logistic Regression
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The average accuracy of the model is 76%. The hyperpa-

rameters barely changed the accuracy of the results. Still, the
gradient descent solver ’lbfgs’ produced the best results by
two tenths of a percent. The solver took around a hundred
iterations to converge in its gradient descent, and did not need
any penalty applied. Penalties change the coefficients of the
features, which can help optimize the results.

B. Support Vector Machine

The second model developed and optimized was the support
vector machine. Essentially, a SVM creates a line, plane, or
hyperplane to seperate the data into their classes [6]. The
model performed optimally with the ’rbf’ kernel, and on
average, correctly predicted the shaded class 75% of the time.
This is slightly lower than the LR model.

.
The confusion matrix shows a higher amount of false

negatives than false positives. This is also the case in the first
model. Most likely, the Shaded features can be indistinguish-
able from the STC in certain instances, making it difficult for
the model to classify the two.



Fig. 4. Confusion Matrix for Shaded Support Vector Machine

C. Neural Network

Neural networks are generally more complex compared to
the LR and SVM models. A NN has hidden layers with a
specified amount of nodes that will activate when certain
conditions are met. The NN goes through a multitude of
forward and backwards propagation to readjust the weights
and bias of the nodes to optimize the classification [7]. Fig.
shows an example of what the inner workings of a multi class
neural network fault classifier looks like.

Fig. 5. Neural Network Architecture used for Fault Detection and Classifi-
cation
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The Neural Network model takes more time to train due

to the multitude of hyperparameters with different values to
try. The hyperparameteres used to train the model in this
study are the activation function, solver, number of hidden
layers, and number of nodes [8]. After many trials, the
optimal hyperparameters are the ’ReLU’ activation function,
the ’adam’ solver, and two hidden layers with 150 nodes each.
The model performed at an average accuracy of 83%, the
highest of the three classical models. The NN model has more
false negatives compared to false positives.

.

III. QUANTUM MODELS

A. Quantum Support Vector Machine

The quantum support vector machine is created with a quan-
tum circuit and simulated with Qiskit libraries. The QSVM
model has different hyperparameters such as the number
of shots, backend simulator, and entanglement. The QSVM
outperformed its classical counterpart by 2%

Fig. 6. Confusion Matrix for Shaded Neural Network

Fig. 7. Quantum Support Vector Machine Circuit
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Fig. 8. Confusion Matrix for Shaded Quantum Support Vector Machine

.

B. Quantum Neural Network

The QNN works by converting classical nodes into quantum
nodes, which can be used with Qiskit libraries [9]. After
extensive work with the code, the algorithm still performed
inconsistently. The QNN still will be worked on in the future
as it is likely the model could perform very effectively if
developed correctly.

.

IV. CONCLUSION

There are four key takeaways from this study. Firstly, every
model developed had a greater number of false negatives



Fig. 9. Confusion Matrix for Shaded Quantum Support Vector Machine

compared to false positves. This shows that machine learn-
ing algorithms has a harder time detecting a shaded fault
because the features can be very similar to STC. Secondly,
the classical neural network model performed the best out
of all the working models. Thirdly, the quantum support
vector machine model was able to outperform its classical
counterpart, showing there can be an advantage using quantum
for this classification problem. Lastly, if the QNN were to
work, it can be inferred that the QNN can outperform every
model. Seeing that the classical NN model performed the best
and that the QSVM boosted the accuracy by 2% compared to
its classical counterpart, the QNN has the potential to be the
best suited model for this problem.
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