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Test accuracy = 97.94

 Obtain solar data with 10 features and 5 classifications. F-score = 97.96
o _ _ _ _ _ Precision = 97.76
O Pre-process data (normalization, one-hot encoding, train/validation/test split). Recall = 98.15

 Train SKLearn’s Logistic Regression model to detect solar soiling faults in the

system.
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Estimation based on forecasted PV capacity growth,
assuming 139 sensors per GW.
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