Quantum Machine Learning for Solar Panel Fault Detection
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U Dataset contains 10 features with 5 classifications: 4 faults and standard test conditions
L Pre-process data (normalization, one-hot encoding, binary classification split, train/test split) 3
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O Train logistic regression, support vector machine, and neural network models g5 £
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O Adjust hyperparameters (epochs, solver, penalty, activation function, hidden layers) E E
O Record results (accuracy, recall, precision, F-score) £ % £
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O Test results against quantum versions of these models =
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Accuracies:

LR 88.76%
SVM 91.29%
NN 94.88%
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