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Problem Addressed

Solar energy has risen as the leading sustainable and cost-effective replacement for

fossil fuels

Annual loss of soiling: 1.5%-6.2% depending on location

This project aims to classify soiling faults by characterizing relevant features as

Expected number of additional soiling sensors required per ye?nrﬂ

Inputs of the Machine Learning algorithm
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Previous Work

Soiling faults result in irradiance as per STC and lower measured power

Requirements for fault detection algorithms:
Accurately classify array’s condition
Adaptable to different configurations
Recognize fault type from small number of training examples
Based off prior knowledge of PV array behavior

Capable of reacting to “unknown unknowns”
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IBM Quantum Composer
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Pre-processed data;
normalization, one-hot encoding, train/validation/test split)




Predicted Labels

No Fault

Classical Machine Learning Algorithms

predicted label

No Fault

No Fault
true label

Soiled No Fault Soiled
True Labels

Logistic Regression
‘saga’ solver
5000 max iterations
97.94% accuracy

Support Vector Machine
‘linear’ kernel
5000 max iterations
Held break ties as true
98.17% accuracy

Predicted Labels

Mo Fault

Soiled Mo Fault
True Labels

Artificial Neural Networks
‘adam’ solver
100 max iterations
1 layer
250 hidden nodes
98.34% accuracy



Quantum Machine Learning Algorithm

Received training on IBM Qiskit : "
. q: = H E—
Began programming a guantum neural network ... . 41,
Quantum Fourier transform for 3 qubits
Preliminary results need improvement @ — — -
q1 . H — — I
Next Steps: @ S =

Coding quantum logistic regression
Optimizing quantum neural network

Complete and finalize IEEE Summary




Predicted Labels

Soiled

Mo Fault

Quantum Machine Learning Algorithms
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Quantum Neural 3
Network =

61.3% accuracy
4 layers, 50 epochs,
learning rate of 0.01
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Conclusions

International collaboration

Research Operations

Basics of PV Fault Detection

Quantum Computing Intro

Machine Learning Algorithms
Quantum Machine Learning

Technical Paper Writing

Presentation to International Audiences
Cyprus Cultural Exposition

KIOS Research Projects




Reflection and Self Assessment
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