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Problem Statement

Classifying faults with machine learning is efficient
o Manually finding faults is difficult and time consuming (expensive)
o Loss of power production within PV arrays
o Automatically finding faults allows for reconfiguration and faster fix time
o Knowing the type of fault will further improve reconfiguration and fix time

How will the shaded faults perform with different models
Which model is superior

Do quantum models have an edge over classical models for given problem
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Python and Matlab training
Machine learning
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Supervised learning for fault detection
Support Vector Machine (SVM)

Logistic Regression (LR)

Neural Network (NN)

Optimize each model for specific faults
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Supervised
Unsupervised
Reinforcement

Training at ASU
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Logistic Regression

> LR uses the sigmoid function for its threshold Sigmoid(x) =
1 + e

> Key Hyperparameters

o Solver
o Penalty

Shaded

> Shaded uses Ibfgs, no penalty
o Average accuracy 76%

Predicted Labels

No Faults

Shaded No Faults
True Labels



Support Vector Machine

1
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> Key hyperparameters K(JC, x’) =e 7 n features * o2
o Kernel
o Degree (if polynomial)

Shaded

> Shaded uses rbf kernel

o Average accuracy /5%
o False Negatives

predicted label

STC

Shaded STC
true label



Shaded Neural Network

> Hyperparameters
o Activation
o Solver
o Hidden layers

Two hidden layers, 150 nodes. activation='relu', solver='adam'

One hidden layer, 25 nodes. Validation accuracy = 80.55 %

- Nodes One hidden layer, 50 nodes. Validation accuracy = 78.86 %

One hidden layer, 100 nodes. Validation accuracy = 80.35 %

> TeSt reSUIt average 83% One hidden layer, 150 nodes. Validation accuracy = 80.52 %
One hidden layer, 200 nodes. Validation accuracy = 80.35 %

One hidden layer, 250 nodes. Validation accuracy = B80.45 %

E One hidden layer, 300 nodes. Validation accuracy = 81.02 %
- § Two hidden layers, 25 nodes. Validation accuracy = 82.51 %
- Two hidden layers, 50 nodes. Validation accuracy = B82.01 %
% Two hidden layers, 100 nodes. Validation accuracy = 82.18 %
g Two hidden layers, 150 nodes. Validation accuracy = B82.51 %
g Two hidden layers, 200 nodes. Validation accuracy = B81.42 %
E Two hidden layers, 250 nodes. Validation accuracy = B1.55 %
Two hidden layers, 300 nodes. Validation accuracy = 81.32 %

Shaded STC
true label



Quantum Neural Network

> |nconsistent results
> Average accuracy below 60% Shaded

> Was not fixed with different
Backend

Learning rate

Epochs

Features included

Classes included

Normal 450

True label

Faulty 400
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N Predicted label

Quantum node
(Qiskit circuit with

trainable parameters; Qiskit
VQE, QAOA etc.)

Pytorch Optimisation
(Computes gradient of Output > compute loss > optimise/update parameters () P T
yTorch

loss function w.r.t.
parameters)

https://qgiskit.org/textbook/ch-machine-learning/machine-learning-qiskit-pytorch.htmi



Quantum Support Vector Machine
> Hyperparameters

e} # Of Qublts adhoc_feature_map = ZZFeatureMap(feature_dimension=2, reps=2, entanglement="

1 dhoc_backend = QuantumInstance
O m Rl
SI UIator BasicAer.get backend("sta "), shots=1824, seed_simulator=seed, seed_transpiler=seed

> Shaded Results )

o Average accuracy /7%
> Better than classical version

adhoc_kernel = QuantumKernel(feature_map=adhoc_feature_map, quantum_instance=adhoc_backend)
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PV Power Generation Model

5000

Use data to predict PV power generation

o

Specific coordinates within Nicosia

Input data from Soda Pro
Power generation data provided by Lenos
Preprocessing data

o
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o

Two sites for input data
m Humidity and Temperature data
m Irradiance data

Time delay

Concatenating arrays

50 100 150 200 250 300
Short-wave irradiation
Al " it 1
............ ¥
Ortakdy Kinibw;
2 LF40
......... .
.......... \
euxista -
Lefkosa
uuuuuu &
QU ~
Dt
5, AboRWIS1.  Maeboviiooa [ N \ A
< o v i K Ty
"
/ . \ +
¥ \ ADXOYYEAS i a AN e a
&7 Gl ” s P
ol 2km \ ./ B
Iwrl ) Aaxataia Lo
Coord: x = 1024, y = 341 | lat = 35.11604, lon = 33.54635 | zoom | I
L v — st (rom 1580y e
End ateup t one o
Longitude (in [-180°, [33.387565 | 0): =
180°]):
Process

https://soda-pro.com/




PV Power Generation Model

Different times of year

o Whole year data X train, X test, y train, y test = train test split(X, y)
O /\[)FiL—“ﬂEi)/ regr = MLPRegressor(activation = "relu", solver = 'lbfgs', learning rate = 'invscaling', max_iter=10000)
19 features used

i reqgr.predict (X_test)
O BeSt Wlth a” featureS regr,score(x_testr Y_test)

MLPRegressor NN

o Activation function
o Solver
o Learning rate

0.9266247497359663

[293] X_train, X test, y_train, y_test = train_test_split(X, y)

WhOle year regr = MLPRegressor(solver = 'adam', max_iter=10000).fit(X_train, y_train)
. . regr.predict (X_test)
o Relu, IbfgS, Invsca“ng regr.score(X_test, y_test)
April-May

0O Relu’ adam’ constant 0.9624118000045835
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Key Findings

Fault Detection

Shaded faults performed best with classical neural network
o Two layer, 150 nodes, relu, adam

QSVM outperformed SVM

o ltis possible that QNN could outperform NN
o  Will possibly continue work on QNN

PV Power Generation Model

All features helped predictions
Select time period models will outperform year long predictions
MLPRegressor NN predicts well
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Next Steps

Possible continuation with SenSIP
Continue to learn about quantum computing
Quantum Neural Network

Solidify machine learning skills

Learn more about hardware of solar arrays

NSF IRES Program on Sensors and Machine Learning for Solar Power
itori ol / ASU - University of Cy

;ﬁ ASU SenSIP - UCy KIOS IRES Support by NSF Award 1854273
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Reflection on Experience and Self Assessment

Basics of Quantum Computing and Machine Learning
Preprocessing data

How to problem solve with code

KIOS Operations, projects, and research

Visiting major cities in Cyprus and learning their history
o Visited cultural and historical sites

Living by myself in a foreign country

How much | have yet to learn

Scheduling my time

The enjoyment of learning something new
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