Quantum and Classical Machine Learning Algorithm Comparisons for Monitoring PV Array Faults

Kaden McGuffie¹, Glen Uehara¹, Andreas Spanias¹, Sameeksha Katoch¹, Lenos

Hatzidemetriou²

1 ASU SenSIP Center, 2 UCy KIOS Center

Sensor Signal and Information Processing Center: https://sensip.engineering.asu.edu/nsf-ires-project/

IRES project sponsored by NSF Award 35993

Presentation Agenda

- Benefits of machine learning for PV fault detection
- ➤ ASU Training
- Classical models
- Quantum models
- ➤ Challenges with quantum
- Project at University of Cyprus
- ➤ Findings
- ➤ Next steps
- ➢ Reflection on experience

Problem Statement

- Classifying faults with machine learning is efficient
 - Manually finding faults is difficult and time consuming (expensive)
 - Loss of power production within PV arrays
 - Automatically finding faults allows for reconfiguration and faster fix time
 - Knowing the type of fault will further improve reconfiguration and fix time
- > How will the shaded faults perform with different models
- ➤ Which model is superior
- > Do quantum models have an edge over classical models for given problem

Training at ASU

- ➢ Python and Matlab training
- ➤ Machine learning
 - Supervised
 - Unsupervised
 - Reinforcement
- > Supervised learning for fault detection
 - Support Vector Machine (SVM)
 - Logistic Regression (LR)
 - Neural Network (NN)
- > Optimize each model for specific faults

robots.net

Logistic Regression

- > LR uses the sigmoid function for its threshold
- ➤ Key Hyperparameters
 - \circ Solver
 - Penalty
- Shaded uses lbfgs, no penalty
 - Average accuracy 76%

$$Sigmoid(x) = \frac{1}{1 + e^{-\theta x}}$$

Support Vector Machine

➢ Key hyperparameters

Kernel

0

Ο

$$K(x, x') = e^{-\gamma ||x-x'||^2} \qquad \gamma = \frac{1}{n \, features * \sigma^2}$$

https://towardsdatascience.com/svm-classifier-and-rbf-kernel-how-to-make-better-models-in-python-73bb4914af5b

- Shaded uses rbf kernel
 - Average accuracy 75%

Degree (if polynomial)

• False Negatives

Shaded Neural Network

> Hyperparameters

• Activation

Two hidden layers, 150 nodes. activation='relu', solver='adam'

- \circ Solver
- Hidden layers
 - Nodes
- ➤ Test result average 83%

One	hidden	layer,	25	nodes. Va	lidation	accuracy =	=	80.55	8
One	hidden	layer,	50	nodes. Va	lidation	accuracy =	=	78.86	de No
One	hidden	layer,	100	nodes. V	alidation	accuracy	=	80.35	8
One	hidden	layer,	150	nodes. V	alidation	accuracy	=	80.52	8
One	hidden	layer,	200	nodes. V	alidation	accuracy	=	80.35	8
One	hidden	layer,	250	nodes. V	Validation	accuracy	=	80.45	8
One	hidden	layer,	300	nodes. V	alidation	accuracy	=	81.02	8
Two	hidden	layers,	25	nodes. V	alidation	accuracy	=	82.51	8
Two	hidden	layers,	50	nodes. V	alidation	accuracy	=	82.01	용
Two	hidden	layers,	100	nodes.	Validatio	n accuracy	y =	82.1	8 %
Two	hidden	layers,	150	nodes.	Validatio	n accuracy	y =	82.5	1 %
Two	hidden	layers,	200	nodes.	Validatio	n accuracy	y =	81.4	2 %
Two	hidden	layers,	250	nodes.	Validatio	n accuracy	y =	81.5	5 %
Two	hidden	layers,	300	nodes.	Validatio	n accuracy	y =	81.3	2 %

Quantum Neural Network

- Inconsistent results \succ
- \succ Average accuracy below 60%
- Was not fixed with different \succ
 - Backend 0
 - Learning rate Ο
 - Epochs Ο
 - Features included 0
 - Classes included 0

411

493

Faulty

450

400

458

Page an Faulty

Faulty

https://giskit.org/textbook/ch-machine-learning/machine-learning-giskit-pytorch.html

Quantum Support Vector Machine

> Hyperparameters

- # of Qubits
- Simulator
- Shaded Results
 - Average accuracy 77%
- Better than classical version

https://medium.com/@patrick.huembeli/introduction-into-quantum-support-vector-machines-727f3ccfa2b4

PV Power Generation Model

- Use data to predict PV power generation
 - Specific coordinates within Nicosia
- Input data from Soda Pro
- Power generation data provided by Lenos
- ➢ Preprocessing data
 - Two sites for input data
 - Humidity and Temperature data
 - Irradiance data
 - Time delay
 - Concatenating arrays

https://soda-pro.com/

PV Power Generation Model

➢ Different times of year

- Whole year data
- April-May

➤ 19 features used

- Best with all features
- ➢ MLPRegressor NN
 - Activation function
 - \circ Solver
 - Learning rate
- > Whole year
 - Relu, lbfgs, invscaling
- ➤ April-May
 - Relu, adam, constant

```
X train, X test, y train, y test = train test split(X, y)
regr = MLPRegressor(activation = "relu", solver = 'lbfgs', learning rate = 'invscaling', max iter=10000).
regr.predict(X test)
regr.score(X test, y test)
0.9266247497359663
[293] X train, X test, y train, y test = train test split(X, y)
     regr = MLPRegressor(solver = 'adam', max iter=10000).fit(X train, y train)
     regr.predict(X test)
     reqr.score(X test, y test)
     0.9624118000045835
```

Key Findings

Fault Detection

- > Shaded faults performed best with classical neural network
 - Two layer, 150 nodes, relu, adam
- ➢ QSVM outperformed SVM
 - It is possible that QNN could outperform NN
 - Will possibly continue work on QNN

PV Power Generation Model

- > All features helped predictions
- > Select time period models will outperform year long predictions
- > MLPRegressor NN predicts well

Next Steps

- Possible continuation with SenSIP
- Continue to learn about quantum computing
- ➢ Quantum Neural Network
- Solidify machine learning skills
- Learn more about hardware of solar arrays

Reflection on Experience and Self Assessment

- ➢ Basics of Quantum Computing and Machine Learning
- Preprocessing data
- ➤ How to problem solve with code
- > KIOS Operations, projects, and research
- > Visiting major cities in Cyprus and learning their history
 - Visited cultural and historical sites
- ➤ Living by myself in a foreign country
- ➢ How much I have yet to learn
- ➤ Scheduling my time
- > The enjoyment of learning something new

