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RET Schedule and Training
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RET Schedule and Training

Technical Exposition

How sensors worked with derivation
of formulas

Kernal and sigmoid with
probabilities

Applications to speech and the

complexity of speech

e

Indoor air quality in cars

Digital Camera Image Sensor

How photodiodes scan and process
data

https://sensip.engineering.asu.edu/ret/

Array of Photodiodes
(Bayer arrangement)




RET Schedule and Training

Research Materials

 Mentor (Michael Stanley) - used
extensively sometimes several times
a day

 SciKit Learn - terminology and syntax
of libraries

e Capabilities of Nano Sense board

* ASU online library - research
potential topics of interest

https://sensip.engineering.asu.edu/ret/




RET Lab Experience Research Summary

Research Objectives

Behavioral Bias
Presentation Bias

 What are the different ways that o, linkngsias
machine learning can be biased? ’ T
ser
. . . Data
 What metrics are used to determine Interaction
bias?
* How does the proximity sensor \\ .
W O r k ? Popularity Bias “ h . | | Historical Bias
Rankir.\g Bias Al go rithm Aggregation Bias
. Evaluation Bias Temporal Bias
* Types of data to collect with RGB Emergnt s sl i
sensor.
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RET Lab Experience Research Summary

Research Background

Normalization

Under and Overfitting
Equal data sets
Sampling bias

Data snooping

Population bias
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RET Lab Experience Research Summary

TaE EffecT oF Bias In TRaNING DaTta vsine THE APDS9%6

Research Proposal

e Difficult to pick a topic initially
e Focused too much on data
collection instead of machine

learning

e Abstract was straightforward

COLOR SENSOR ON THE ARDUINO BLE 33 SExsE BoARD

Brian Hawkins, RET

Abstract — Machine learning is only as good as the data
that creates it and given the mistrust of AT and big data by
the public recently, it is useful to explore the scemarios
where machine learning might give misleading results.

Index Terms---machine learning, supervised learning,
classification

1. PROJECT DESCRIPTION

In supervised classification, training samples from known
data distributions are tested with the goal to idemtify a
classification boundary that separates these classes. New data
samples with known labels can then be identified as belonging
to one of these classes. Support vector machines (SVMs),
decision tree. random forest, and others are used to solve this
problem

The training data in this scenario iz provided by standard
data sets, common objects meeting the color criteria, or phone
applications capable of creating specific color profiles. Each
of these situations will be explored for vnbiased and biased
data. Biased data will be created by not normalizing the data,
sampling vnequal data sets, and intentionally creating training
sets that are not representative of the population to be
modeled.

Many problems are susceptible to varicus types of bias
Measurement biaz is well kanown in the recidivism risk
prediction tool COMPAS which was a factor leading to higher
false positive rates for black versus white defendants. [1].
Population basiz has been documented in ImageNet where
43% of the images are from the United States and a majority
of the remaining portion are from North America or Western
Europe while 3.2% are from China and India combined. [1]

In thiz project, [ first performed a literature review of the
existing work in this area, examples of its use, and possible
future application. T then explored the limitations of the color
sensor on the Arduino BLE 33 Sense Board in an attempt to
design a scenario that would produce repeatable results during
training and testing

In testing support vector machines and decision trees ona
4 color classification problem, it was determined that a default
state needed to be determined to prevent incorrect
identification of colors during testing. Tt was also determined
that while the decision tree consistently gave accurate results,
the support vector machine did not until the radivs basis
function was used as the kernel and the values of gamma and
C were adjusted. So while it i3 expected that unequal and
non-normalized data will vield a non-ideal confusion matrix. it
may not always occor depending on choices made for
parameters during machine learning

https://sensip.engineering.asu.edu/ret/
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RET Lab Experience Research Summary
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Next STEPS in Research

* Examine more specific metrics that
could be used to quantify the margin

* | mostly need to work on
programming and creating
additional graphs

e Possible work on margin distribution

* Original plan - Nano board, battery, .
micro SD card reader.

* 3D printed enclosure

Classification -

https://sensip.engineering.asu.edu/ret/
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RET Instructional Lesson Implementation

e [ ] i - K-
P ©) ML Algorithms - K-means © shae B e
e SSO n J e‘ Ive s File Edit View Insert Runtime Tools Help
— + Code + Text # Copy to Drive Connect /' Editing ~
Before we can apply K-means, we need a dataset to apply it to. Later we will use some real-world datasets, but for now we can generate a
Q random dataset composed of random "blobs" or clusters of data.

Notice that while the vertical axis is often labeled y in mathematics, in Machine Learning y typically represents the data label. The data is

e Run the code in Google Colab to help o e I — , ent et
typically stored entirely in X, which is commonly a matrix with multiple columns. In this case, we are creating two-dimensional data, so X has

() two columns. Here, y is a single vector containing 0's, 1's, and 2's representing which blob each datapoint belongs to. We will in fact be

students understand machine learning by

[ ] #@title Generate random data
from sklearn.datasets import make_blobs

Generate random data

. . f . . d
eXa l I I I n I ng CO n u S I O n l I Iatrlces a n Dataset_Size = 300 #@param {type:"slider", min:5@, max:1eee, s Dataset_Size: °® 300
Number_of_Clusters = 3 #@param {type:"slider", min:e, max: 5,
Standard_Deviation = ©.6 #@param {type:"slider", min:0, max:2, Number_of_Clusters: [ ) 3
. Random_Seed = © #@param {type:"integer"}
corresponding scatter plots. e o U b A St 45EE | e pevinions

#If you remove the random_state=0, it will create random clust
[>_] X, y = make_blobs(n_samples=Dataset_Size,

e Test various data sets using the Support
Vector Machine algorithm on Google Colab to
create a confusion matrix and scatter plots.

e Extension - test their machine learning

algorithms using items of student’s choice

https://sensip.engineering.asu.edu/ret/
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RET Instructional Lesson Implementation

Lesson Description

Bias in Machine Learning

* Students will be working in groups to use the
support vector algorithm to create confusion
matrices and scatter plots on a set of given data.
Groups will compare their results to the results
of other groups.

* My 1goal is to have students understand a
confusion matrix and corresponding scatter plots
and how data bias can affect the outcome of a
machine learning algorithm

* Most of the assessment will be formative while
students are working, but students can have a
quiz on confusion matrices and a short
evaluation of the data that | provided their
group.
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Questions & Feedback

* What sorts of scaffolding opportunities do you think | should
provide students, or any other suggestions?

https://sensip.engineering.asu.edu/ret/
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Self Assessment

* The open ended nature of the program worked well and also didn’t.
 Difficulty picking a problem, misunderstanding of machine learning, too much
focus on the sensor and data collection, Python background
e Early access to code samples
* Machine learning algorithms and terminology
* Code management in Jupyter
* ASU online libraries and Mendeley
* Flexible nature of the program

* One page summary and elevator pitches for students

https://sensip.engineering.asu.edu/ret/
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Thank You

. Andreas Spanias

) M!Chael Stanley Disclaimer: No graduate students were harmed in the
. Kristen Jaskie production of this paper. Authors are listed in order of in-

. Jean Larson creasing procrastination ability.

. Ruby Sayed

Best excerpt from my research

If you are interested in looking at bias at all:

https://github.com/dssg/aequitas

https://dssg.github.io/fairness tutorial/
https://textbook.coleridgeinitiative.org/chap-bias.html

https://fairmlbook.org/
https://www.amazon.com/Ethics-Data-Science-Mike-Loukides-ebook/dp/B07GTC8ZN7
https://www.solveforgood.org/
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