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Abstract—Photo Voltaic (PV) smart monitoring devices 

(SMD’s) provide 10 features of data such as current, voltage, ir- 
radiance, etc. These features have been used by Neural networks 
to detect and classify faults in a solar array with 90% accuracy. 
The purpose of this work will be to identify which of the 10 
features contributes most significantly to the accuracy of the fault 
detection and classification neural network. Using linear principal 
component analysis as a dimensionality reduction technique, and 
a random forest model to determine feature importance, we show 
that the number of features can be reduced while retaining high 
classification accuracy. 

Index Terms—linear principal component analysis, feature 
analysis, neural networks, machine Learning, PV modules 

I. INTRODUCTION 

Utility-scale solar farms greatly benefit from sensor moni- 

toring systems with the capacity to automatically and remotely 

detect array faults and anomalies. A system with such capa- 

bilities not only reduces monitoring and maintenance cost but 

also elevates the efficiency and robustness of a PV power plant, 

as the sensor data provided by such a system can also be used 

to optimize power output via topology reconfiguration. [1] 

II. MACHINE LEARNING AND NEURAL NETWORK 

Previous work in SenSIP lab addressed several problems in 

solar array monitoring, control and optimization [1-

11].  Initial work was reported in [2] where traditional 

statistical methods were proposed.  Later machine learning 

methods [3] were considered including PU Learning 

[4].  Fault detection using neural nets was reported in [5,6] 

and optimization methods were reported in [7].  PU learning 

for fault detection was reported in [8] and a recent study 

including neural net fault detection experiments and 

simulations on a quantum computer simulator was published 

in [9]. 

 

 
Fig. 1. Fault classification using a neural network [1] 

 

A visualization of the unsupervised neural network archi- 

tecture used in this project is shown in figure 1. A set of data 

(one measurement corresponding to each feature) is passed 

through the neural network to be classified as clean ”no fault”, 

or one of 4 faults. The shown architecture has produced 90% 

classification accuracy [1]. In order to optimize such a 

network, however, it may be useful to identify and reduce 

redundancies in the data set while maintaining high degrees of 

classification accuracy. This simplification could reduce 

computational resources, prevent over fitting and improve 

classification accuracy. 

III. EXPERIMENTAL   METHODS 

Several techniques are commonly used to identify the data 

features which contribute most significantly to a network’s 

classification ability [12]. This work will focus specifically on 

linear principal component analysis and random forest as di- 

mensionality reduction techniques. Principal Component Anal- 

ysis (PCA) involves finding the eigenvectors of the data set’s 

covariance or correlation matrix. This technique effectively 

reduces the number of dimensions in a data set, by creating 

new variables (principal components), as linear functions of 

original variables [13]. Figure 2 shows the directions, or 

rather, the principal components (PC1 and PC2) that capture 

the largest variance in the data. In this case, projecting the 

data points to the singular dimension of PC1 retains a wide 

range of data with minimal overlap. Nonlinear principal 

component analysis may be used in conjunction to capture 

trends in data that may not be accurately described via a 

linear function. 

 

Fig. 2. PCA of a gene expression data set [14] 

 

Since the principal component method reduces the feature 

space by combining the original features into more significant 

ones, the original feature space is lost. Thus, the 

importance of the original features cannot be derived with 

this method. We will instead use random forest analysis to 

determine these importances. Random forest is an important 

machine learn- ing classification algorithm, which uses 

bagging and feature randomness to generate many 

uncorrelated decision trees that independently and then 

aggregately predict a classification. By creating decision 

trees that split the data with a random selection of features, 

and by training these trees on different sets of data via 

bagging, the final aggregate classification is 
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more comprehensive than the prediction of any individual tree. 

The structure of a random forest algorithm is visualized in 

figure 3. Using this algorithm, it’s easy to determine how well 

any feature splits the data by its Gini impurity. Gini impurity 

is simply the probability of incorrectly classifying a data point 

[15]. The primary role of the random forest algorithm in this 

paper is to provide these feature importances. We then use a 

neural network model to affirm that the random forest 

algorithm is correctly determining which features are most 

important for classification accuracy. 

 

Fig. 3. Random forest structure [16] 

 
IV. DATASET 

Both Machine learning techniques were implemented in 

python with the use of machine learning and data science 

toolkits such as scikit learn, keras, pandas, and numpy. We 

used the PVWatts dataset from the National Renewable En- 

ergy Laboratory (NREL) [17]. It contains 21,486 unique data 

samples for each feature, of which 4297 samples each belong 

to one of 5 classifications. There are 10 input features of data 

provided including VOC, VMP , ISC, IMP ,  PMP ,  tempera- 

ture, irradiance, Fill Factor, gamma and DC power. Gamma 

and fill factor are dependent features in that they’re 

mathematical combinations of other features. Gamma is the 

ratio of power over irradiance and fill factor is the ratio of 

the maximum power from the solar cell over the product of 

VOC and ISC. The 5 classifications as shown in figure 1 

include standard test conditions, degraded modules, shading, 

soiling, and short circuit. Of this data, 70% was used to train 

the neural network, and the remaining for validation. 

V. RESULTS 

We tested the classification accuracy of the neural network 

with an increasing number of principal components as features. 

The results of which are shown in figure 4. It’s clear that to 

reach the target 90% classification accuracy and to explain for 

near 100% of the data variance, the network needs 8 principle 

component inputs. Additional principal components did not 

improve the classification accuracy. It’s also evident that 

there are diminishing returns in accuracy beyond 4 principal 

components, and that it may be beneficial to use 4 components 

at approximately a 5% loss in peak accuracy. 

We then generated feature importances from the random 

forest algorithm. Figure 5 shows the features in order of 

 

 
 

Fig. 4. Linear PCA classification accuracy. 

 

 

importance. The top 3 features are approximately twice as 

important as the 4th and 5th most important features. Using 

these rankings, we tested the neural network’s classification 

ability using an increasing number of features ordered from 

most to least important. Figure 6 shows that the model reaches 

target accuracy with only the 4 most important features. 

Similarly, to PCA, the top 4 features are responsible for 

most of the accuracy improvement. 

 

Fig. 5. Random forest feature importances 

 
 

 

Fig. 6. Classification accuracy from best to worst features 



In our analysis of feature importance, we found gamma to 

be the most important feature. Gamma is the ratio of two 

other highly important features: power and irradiance. It might 

make intuitive sense that gamma is the most important because 

it carries the significance of two features. An effort was 

made to mathematically combine other features in a similar 

fashion, to determine whether this intuition was generally 

true. While other dependent features did often carry more 

importance than their constituent features, the presence of 

outliers, inconsistencies, and a general lack of ability to 

systematically consider all possible combinations of features 

prevents the assertion that dependent features indeed carry the 

importance of multiple features. One such inconsistency is 

fill factor, as it is the least important feature, despite being a 

ratio of three other features. Another finding, however, shows 

that dependent features do play a unique role in the neural 

network’s classification ability. In figures 7 and 8, we show the 

network’s performance without dependent features. It’s clear 

that the network loses 5% accuracy. This finding is concurred 

in figures 9 and 10, as we reintroduce gamma and regain the 

lost accuracy. It can be concluded then, that the information 

contained in certain dependent features is essential to the 

neural network. 
 

Fig. 7. Feature importance without gamma and fill factor 

 

 

 
Fig. 8. Classification accuracy without gamma and fill factor 

 

 

VI. CONCLUSION 

The feature space can be effectively reduced and optimized with 

both Linear Principal Component Analysis and Random Forest 

importance techniques. In either case, the top 4 features allowed 

the network to reach at least 85% classification accuracy. It 

cannot be concluded that dependent features are consistently 

more important, but they do hold a vital role in training the 

neural network to accurately classify faults. 

 
 

 
 

Fig. 9. Feature importance with gamma 

 

 

Fig. 10. Classification accuracy with gamma 
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