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Background

- Bycatch, unintended capture of
marine species, is a prominent issue
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uses LED illumination levels as stimuli
to warn turtles of potential danger.

Fig. 1: Block diagram of the recognition system

Energy Saving (%)

Experiments showed that the
proposed approach provides up to
92.7% energy savings
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Fig. 2: Energy saving percentage compared to base frame rate
and LED lighting under different environments




-» How can we automate
marine life behavior
analysis to better optimize

Problem & warning stimuli/sensory
Objective cues?

- How do sea turtle
orientations (angle and
depth) affect response
behavior to stimuli?



Methodology

- Generated 270 clips of manually
identified sea turtle behaviors
4 u-turn behavior (n=141)
¢ reversal behavior (n=129) e Sequence *
- Convert clipped videos to single image
sequences (270 x 60fps)
- Created ground truth labels for observed
sea turtle depth
- Trained, validated, and tested pretrained

Fig. 3: Model of object detection + bbox retrieval
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Fig. 4: The geometric similarity in 2D/3D projection (Liu, 2019)



Objection Detection Progress - Sea Turtle Detection
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Fig. 5: 2D bounding boxes for pre-trained model

predicted label

Fig. 6: 2D bounding boxes for Fig. 7 & 8: Evaluation metrics for sea turtle prediction
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Challenges

- Open-source data limitations
€ Acquisition & pre-processing

- Computing Difficulties
& Transfer learning needed
4 Long training computing
times and cost

- 3D Bounding Box Estimation
€ Lacking camera calibrations
4 Time-consuming manual
ground truth sensor
locations

- Benchmarking
4 No similar model available
for marine life behavior
analysis
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Conclusions

Developed automated sea turtle depth
estimation behavior model

Sea turtle object detection accuracy surpasses
YOLO v4 standard benchmark @mAP50 =
85.64%

Performed mathematical 2D Bounding Box =>
3D Bounding Box coordinate conversion

Training requires high computing speed and
memory

Limited accessible and current open-source
data for sea turtles
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