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MOTIVATION

PROBLEM STATEMENT

• The importance of PV features in classifying faults 
is unknown, and the current NN model is unable to 
distinguish between STC and shaded faults with 
the current dataset. 
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• Neural networks can be used to classify solar faults
• Nonlinear principal component analysis can show 

redundancies in input features. 
• Reducing the dimensions of the input features can 

simplify the neural network
• The simplified network maintains accuracy. 

• The current model has difficulty distinguishing 
between STC and shaded faults. 

• Passing the data through a kernel function or 
encoder NN may be able to separate these classes.

• Not all features may be necessary for the network.
• PCA can inform us to which features are most 

important. 
• Nonlinear PCA methods may be more effective if 

the input features are nonlinearly dependent.

EXPERIMENTAL METHODS

Kernel PCA
• Pass the feature data through multiple kernel functions.
• Select different numbers of input features and pass the 

modified data into a NN for fault classification.

Autoencoder
• Train a neural network than encodes the data to a 

specified number of dimension then decodes it.
• Take the output of the encoded layer and pass it into a 

fault classification NN

Kernel PCA
• Linear Kernel Function is the most accurate
• Classification accuracy levels for 5+ features 
Autoencoder
• The autoencoder was less accurate overall with <80% 

accuracy 

PRELIMINARY RESULTS
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