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Abstract—Solar fault classification neural networks have
shown promise in recognizing fault conditions and improving
power output of solar arrays in conjunction with Smart Moni-
toring Devices (SMD). These SMD’s contain sensors for recording
10 solar features on a solar panel and apply dynamic switching
to maximize power output under a given fault. [1] The sensor
data can be used to classify the common solar array faults
soiling, arc faults, degraded modules, and shading. In this study
solar feature data from is manipulated using kernel principal
component analysis (KPCA) and autoencoder neural networks
to reduce its dimension. The modified data is used to train
fault classification neural networks with various dimensions of
input features to compare classification accuracy. Through this
process it was determined that the feature set had a significant
amount of redundancy, but no nonlinear relationships that could
be manipulated to improve fault classification accuracy.

Index Terms—Feature analysis, Nonlinear PCA, Neural net-
works, Machine Learning, PV modules, Kernel PCA, Autoen-
coder.

I. INTRODUCTION

Solar energy has tremendous potential to alleviate global
energy insecurity as a source of clean renewable electricity
[2]. Developing solar infrastructure comes with a host of
problems related to maintenance and consistency that need to
be overcome to ensure reliability. Solar arrays are subject to
several common fault conditions that reduce their power output
and require a technician to identify and solve in order to restore
peak operating conditions. These faults range from soiled
panels that require cleaning to arc faults that can be hazardous
to technicians and the array. [3] It would be more cost
effective and efficient to remotely monitor the arrays status and
autonomously detect faults than manually inspecting an array
for fault conditions. This type of autonomous detection has
been successfully implemented using a combination of Smart
Monitoring Devices (SMD) and an Artificial Neural Network
(ANN) for classification [1].

Previous work in SenSIP lab addressed several problems
in solar array monitoring, control and optimization [4]-[13].
Initial work was reported in [4] where traditional statistical
methods were proposed. Later machine learning methods [5]
were considered including PU Learning [6]. Fault detection
using neural nets was reported in [7], [8] and optimization
methods were reported in [9]. PU learning for fault detection
was reported in [10] and a recent study including neural net
fault detection experiments and simulations on a quantum
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computer simulator was published in [11]. Training neural
networks on quantum computer simulators is complicated,
time consuming, and the difficulty scales with the number
of features and size of the data set being used. A major
impetus for this project was alleviating these problems through
dimensional reduction of the training data set.

Fig. 1. Solar Fault Classification Neural Network [1].

This autonomous fault detection system uses 10 features
relevant to solar power production such as voltage, current,
irradiance, and temperature. Initial attempts at redesigning
the ANN to use fewer input features resulted in significant
reduction of the networks fault classification accuracy. It would
be desirable to reduce the number of features the model is
dependent on for computational efficiency, and to reduce the
number of sensors needed for each SMD.

One method of dimensional reduction is principal compo-
nent analysis (PCA). Principal component analysis allows us
to determine the importance of variables and the correlation
between variables [14]. More specifically, if there are unique
first degree relationships between variables in a system then,
PCA produces a condensed set of variables where the variable
with greatest variance is the most important to the system.
[15] Traditional PCA is an inherently linear method of data
analysis and fails in the face of systems with nonlinear feature
sets. PCA can be elaborated on by using Nonlinear principal
component analysis (NLPCA) techniques. The advantage of
NLPCA is revealing if a data set exists in a nonlinear manifold
that can be made linear. [16].

In this paper we focus on two methods of NLPCA to
reduce the dimension of training required to achieve high fault
classification accuracy. Additionally, we attempt to increase
ANN fault classification accuracy beyond a roughly 90 percent
threshold previously established [1]. The first method of
NLPCA is Kernel Principal Component Analysis (KPCA).



Fig. 2. SenSIP Solar Testbed at ASU Research Park

KPCA can unravel nonlinear relationships in a feature set
by passing the feature vectors through a selected kernel
function [17]. This method alters the original feature space
and compresses it to a selected number of dimensions. An
advantage of this method is that, in nonlinear systems, it can
help separate the labeled data allowing for a more accurate
decision boundary.

The second NLPCA method explored in this paper is the
autoencoder neural network configuration. The autoencoder
neural network consists of a hidden layer with three distinct
components which will be referred to as the encoding, bot-
tleneck, and decoding layer. The objective of this network
architecture is to recreate input feature data at the network
output after compressing the features in the bottleneck layer
[16]. The extent of the compression or dimension of features in
the compressed space is determined by the number of neurons
in the bottleneck layer. By applying reinforcement scoring to
the network output the network is forced to learn the most
important aspects of a data set and represent them through its
encoding.

II. NREL DATA SET

The labeled solar data set used in this research was recorded
by the National Renewable Energy Laboratory [18]. The data
set consists of ten features and five labels. The ten features are
DC power, maximum voltage, maximum current, temperature,
irradiance, fill factor, gamma ratio, maximum power, open-
circuit voltage, and short-circuit current. The five labels consist
of a standard test condition (STC) and four faults; degraded,
shaded, soiled, and short circuit.

Data was recorded at hour intervals over the course of
one year. The standard test condition data is defined by
any given days maximal power output corresponding to the
days temperature and irradiance conditions. Shaded faults
were labeled as data points with reduced irradiance values
while soiled modules were classified by standard irradiance
measurements with reduced power output. In other words, if
irradiance was at the standard test condition level, but the
power output was low then it was considered a soiled fault.
A degraded module was classified by reduced open-circuit
voltage or reduced short-circuit current measurements [3].

III. KERNEL PCA

Kernel PCA is conducted by passing a data set through a
kernel function to map it in a higher-dimensional space [19].

PCA is then used on the modified data set to assign weight
to the modified features. [17]. The data set was, separately,
passed through five different kernel functions: polynomial,
cosine, radial bias function, sigmoid, and linear. The linear
kernel is identical to standard PCA and can be used as a
baseline for determining the other kernel function’s ability to
capture nonlinear structures in the data set. After generating
a modified feature space using the kernel function, we have a
full set of features and labels that can be used to train a fault
classification neural network.

Kernel PCA searches the data set for nonlinear structures
but must still be applied to a fault classification network
to determine the optimal number of principal components.
Principal components is used here to refer to the number of
KPCA variables being used to train classification networks.
Fault classification networks were trained using 2-10 of the
kpca generated features for each kernel function to observe
the changes in classification accuracy with increasing principal
components.
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Fig. 3. KPCA Schematic Diagram.

IV. AUTOENCODER NEURAL NETWORKS

Autoencoder neural networks operate by compressing a
feature space into a specified number of neurons then ex-
panding back to the original size. This compression scheme
represents a non-linear generalization of PCA that captures
high-order correlations between the features in the input layer
[20]. If the autoencoder is successful at replicating feature
data, then it was able encode the full feature set into a smaller
one. A successful compression implies that the encoder has
learned the non-linear structure of the features and that there
is enough redundancy in the data set to represent all relevant
information in a condensed form. Once trained, passing solar
feature data into the network creates an encoded space in
the bottleneck. The data output from these bottleneck neurons
becomes our principal components. This means we can specify
any number of principal components less or greater than
the dimension of the original feature space. These principal
components generated by the autoencoder are then used to
train the solar fault classification neural network. As with
the KPCA method 2-10 principal components were used as
training data to compare classification accuracy. Additionally,
several autoencoders were given more than 10 bottleneck
neurons to expand the feature set beyond 10 dimensions.
These larger feature spaces were also used to train the fault
classification network.
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Fig. 4. Autoencoder Schematic Diagram.

V. RESULTS

The use of kernel principal component analysis shows that
the linear kernel function produces the most accurate classi-
fication with this data set. Additionally, the network achieved
maximum accuracy using only 6 principal components and
saw diminishing returns on accuracy after 4 principal com-
ponents. The cosine and sigmoid kernels showed promise and
generally saw an increase in accuracy with increasing principal
components, but accuracy was less than that of the linear
by several percent. The radial bias function and polynomial
networks achieved 80 percent classification accuracy with 4
components but became less accurate when increasing the
number of features.
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Fig. 5. KPCA Average Accuracy

The most telling result of the KPCA is that the “linear”
kernel function, a regular PCA, was most successful in di-
mensional reduction. This indicates that the original feature
space was not composed of nonlinear relationships. As a
result, none of the kernel functions were able to produce a
feature space that enabled greater than 90 percent classification
accuracy. The neural networks trained with KPCA generated
features were able to obtain high accuracy using only 4
components demonstrating a large amount of redundancy in
the data set. Additionally, the largest limitation to increasing

classification accuracy appears to be the ”shaded” and ”STC”
fault classifications. The confusion matrix for a 5-feature linear
KPCA shows the majority of misclassification is between these
two classes.
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Fig. 6. 5-Feature Confusion Matrix Showing Classification Percent Accuracy.

The overlap between these two classes is so prevalent that
it can be seen in a 2D plot of any combination of 2 features
from the original data set. To improve classification accuracy
there would need to be an addition of features to these classes.
Another solution to misclassification would be to redefine
the shaded class to separate the two classes more. Irradiance
is the feature directly afflicted by a shaded fault. The most
reasonable adjustment to the shaded fault definition would be
to reduce the threshold of irradiance from less than 75 percent
[3] of the daily maximum to a lower percentage.

The Autoencoder neural network approached 80 percent
accuracy but suffered from sudden drops in accuracy at greater
than 4 principal components. Doing multiple Monte Carlo
trainings to obtain average accuracy produced drops in average
accuracy at different numbers of principal components. This
inconsistency among trials, and lower accuracy than the KPCA
trials, indicates several things. When autoencoders are given
too much space to operate in they can learn to copy input
data instead of learning relevant features [21]. This would
explain why the large drops in accuracy seem to occur when
the network is tasked with creating more than 4 principal
components. The accuracy being lower than PCA methods is
a more difficult problem to address but is likely due to a lack
in volume of training data to sufficiently train the autoencoder.

A similar result was obtained by expanding the bottleneck
layer to contain more features than the original data set.
Classification accuracy was inconsistent and generally sat at
the 80 percent accuracy mark.

The autoencoder suffers from a similar inability to classify
between the STC and shaded classes. This is visible in a 3D
representation of the shaded and STC feature spaces using
both the autoencoder and KPCA. The autoencoder result was
consistent with that of the KPCA in that there is diminishing
returns on accuracy when exceeding 4 principal components.
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Fig. 7. Two Examples of Autoencoder Average Accuracy.

Fig. 8. Shaded and STC Overlap Using KPCA and Autoencoder Features.

VI. CONCLUSION

In conclusion, this study utilized nonlinear principal com-
ponent analysis techniques to develop a better understanding
of the features in the NREL solar data set. Both KPCA and
autoencoder neural networks were able to show redundancy
in the feature set. In each case the fault classification net-
works trained with modified features saw an “elbow” in their
accuracy curve at 4 principal components. This demonstrates
a large amount of redundancy in the feature set’s ability to
classify solar faults. Perhaps the most relevant conclusion
of this study is that the feature set does not have a set of
nonlinear redundancies that can be analyzed to improve fault
classification accuracy. Linear principal component analysis
was sufficient in reducing the feature set dimension, and was
the most accurate method overall. The autoencoder was the
least accurate method of dimensional reduction likely because
there wasn’t enough training data or features for the network
to successfully learn the features important qualities.

Based on this information, improving the solar fault classi-
fication network can be achieved by using the 4 most relevant
principal components in combination with a solution to the
STC and shaded fault misclassification. This could be in the
form of new solar features in addition to the top four already
in use, or by redefinition of the fault conditions.
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