
  

 

Abstract—Surface albedo describes the fraction of sunlight 

reflected by a surface using a value from zero to one. Surface 

albedo is a key piece of information for algorithms used to 

maximize the performance of solar arrays through topology 

reconfiguration. Since surface albedo can vary widely due to 

environmental conditions, predicting surface albedo is 

incredibly useful.  This paper explores the leveraging of artificial 

neural networks to predict surface albedo.  
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I. INTRODUCTION 

As the harmful effects of using non-renewable energy sources 

become more apparent, the shift towards renewable energy 

sources has rapidly increased. The most popular sources of 

renewable energy include biomass, geothermal, hydro, solar, 

and wind. When comparing the global potential for these 

renewable energy sources, 90% comes from solar, 9% comes 

from wind, and only 1% comes from other renewables [1]. 

Since solar comprises such a large percentage of the potential 

global renewable energy, the development of efficient PV 

systems is critical. 

 

One difficulty with developing efficient PV systems 

is the fluctuation of solar energy produced as environmental 

factors change. One of the factors affecting solar power 

production is surface albedo. Surface albedo describes the 

fraction of sunlight reflected by a surface measured from zero 

to one, where zero describes a surface that absorbs all sunlight 

and one describing a surface that reflects all sunlight [2]. 

 

 
Figure 1: Block diagram for surface albedo prediction using artificial 

neural network regressor. 

Surface albedo can change based on various environmental 

factors. Surface albedo tends to be higher during the early 

morning and late afternoon and dip during the midday. 

Different seasons also show different surface albedo 

measurements, with the highest values occurring during the 

winter months and the lowest during the summer months. 
Climate also affects surface albedo, with dry regions showing 

an average surface albedo of 0.5 compared to a surface albedo 
of 0.2 in more humid areas. Furthermore, the presence of 

snow could increase surface albedo to approximately 0.9 [3]. 

 

Surface albedo is related to irradiance, which describes the 

rate that solar energy hits a surface in units of Watts per square 

meter.  Irradiance data has previously been used in machine 

learning algorithms to reconfigure the topology of solar arrays 

to maximize performance [4]. Since surface albedo is a 

function of irradiance, predicting surface albedo could further 

improve these topology reconfiguration models.    

 

SenSIP lab has previously addressed several problems in 

solar array monitoring, control, and optimization [5-15]. 

Initial work was reported in 2012 where traditional statistical 

methods were proposed [6]. Machine learning methods were 

later considered, including PU learning [7][8]. In 2019, fault 

detection using neural nets and optimization methods were 

reported [9-11]. Most recently, SenSIP lab has reported PU 

learning for fault detection and published a study including 

neural net fault detection experiments and simulations on a 

quantum computer simulator [12][13]. 

 

This research proposes training artificial neural networks 

using one-year-long data from the NSRDB database, 

collected at 30-minute time resolution.  The data includes nine 

major features which are utilized to predict surface albedo. 

The use of artificial neural networks to predict surface albedo 

should allow models that reconfigure the topology of solar 

arrays to maximize efficiency throughout the year and reduce 

the power output fluctuations in the PV systems. 

 

II. DATA 

The data used in this research was obtained from the National 

Solar Radiation Database (NSRDB). This project used the 

data from the entire year of 2015, collected at intervals of 30 
minutes. Each datapoint can be identified by latitude, 

longitude, time zone, elevation, month, day, hour, and minute. 

The specified data includes 12 major features which are used 

to predict surface albedo. These features include Diffuse 

Horizontal Irradiance (DHI), Direct Normal Irradiance (DNI), 

Global Horizontal Irradiance (GHI), Cloud Type, Dew Point, 

Solar Zenith Angle, Wind Speed, Precipitable Water, Wind 

Direction, Relative Humidity, Temperature, and Pressure. 

 

Before using the data to train the artificial neural network, the 

data underwent pre-processing. First, one-hot encoding was 

performed on the Cloud Type portion of the data since Cloud 

Type was a categorical variable followed by dropping the Fill 

Flag column. Next, sklearn’s StandardScaler was used to 

standardize the dataset. Finally, the data was divided into an 

80/20 train/test split. 

 

III. ARTIFICIAL NEURAL NETWORK REGRESSOR 

This project trained SKLearn’s Multi-layer Perceptron 

Regressor (MLPRegressor) to predict surface albedo. A 

multi-layer perceptron is a type of artificial neural network. 

This kind of network will typically have an input layer, an 
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output layer, and one or more hidden layers. We use MLP 

Regression to predict a surface albedo value.  

 

An overview of artificial neural network is shown in Figure 

2. In this work, we used sklearn’s MLPRegressor model 

which has several hyperparameters that can be tuned to 

optimize the output predictions. The model allows alteration 

of the number of hidden layers, the number of nodes in each 

layer, the number of iterations used, learning rate, batch size, 

solver, activation function, and several other features [6].  

 

 
Figure 2: Depiction of an artificial neural network with two hidden 

layers. 

IV. RESULTS 

The project began with analysis of the data from the NSRDB. 

To get an idea of the values being used, the DHI, GHI, and 

surface albedo for the year were plotted.  

 

 
Figure 3: Graph depicting average DHI, GHI, and Surface Albedo 

for the year 2015. 

A. Hyperparameter Tuning 

 

Next, the first step in utilizing the artificial neural network 

was to decide how many hidden layers, nodes, and iterations 

would be used. It was decided that root mean square error 

(RMSE) would be used to as a metric to calculate the distance 

between ground truth and predicted surface albedo. In order 

to determine the best parameters for this artificial neural 

network, a number of simulations were run with various 

combinations of hidden layers, nodes, and iterations. Some of 

the first simulations run used one, two, and three hidden 

layers and tested the RMSE with nodes 1-100. These 

simulations were performed using 1000 iterations and the 

default parameters for all other settings of MLPRegressor.  

 

Based on the relatively small size of the data set, it was 

decided that ten node layers would be used for this 

experiment. 

 

Once the number of nodes was decided, simulations were run 

with one, two, and three hidden layers of ten nodes each over 

iterations 1-1000. 

 

 
Figure 4: Graph depicting RMSE for artificial neural network using 

one, two, and three layers with 10 nodes each and iterations 1-1000. 

Figure 4 depicts the results of the simulations over 1-1000 

iterations. As seen in the graph, using two hidden layers at 

1000 iterations produced the lowest RMSE. From all the 

simulations discussed thus far, it was decided to use two 

hidden layers with ten nodes each at 1000 iterations.  

 

The next hyperparameter explored was the learning rate. 

Simulations were run with three different learning rates of 

0.001, 0.0001, and 0.0001. 

 

 
Figure 5: Graph depicting RMSE for artificial neural network using 

two hidden layers with 10 nodes each, 1000 iterations, and learning 

rates 0.001, 0.0001, and 0.00001. 



  

Figure 5 depicts the results of the simulations with the three 

different learning rates over 1000 iterations. As seen in the 

graph, MLPRegressor’s default learning rate of 0.001 was 

found to produce the lowest RMSE.  

 
The next hyperparameter explored was batch size. Eight 

different simulations were run using two hidden layers with 

ten nodes each, the default learning rate, 1000 iterations, and 

batch sizes from eight to 64. 

 

 
Figure 6: Graph depicting RMSE for artificial neural network using 

two hidden layers with 10 nodes each and batch sizes 8-64 over 1000 

iterations. 

Figure 6 depicts the results of the simulations run using eight 

different batch sizes. Based on these results, it was decided 

that a batch size of 64 would be used.  

 

The next hyperparameter explored was the solver. The two 

solvers tested were the default solver Adam and Stochastic 

Gradient Descent (SGD). 

 

 
Figure 7: Graph depicting RMSE for artificial neural network using 

two hidden layers with 10 nodes each, batch size 64, and solvers 

Adam or SGD over 1000 iterations. 

As seen in figure 7, the solver Adam resulted in a lower 

RMSE than SGD. Therefore, it was decided that Adam would 

be used going forward [7] [8].  

 

The final hyperparameter tested was the activation function. 

Three different activation functions were tested. These 

activation functions were the rectified linear unit function 

(relu), logistic sigmoid function (logistic), and the hyperbolic 

tangent function (tanh). 

 
Figure 8: Graph depicting RMSE for artificial neural network using 

two hidden layers with 10 nodes each, batch size 64, and activation 

functions relu, tanh, or logistic over 1000 iterations. 

The results of the simulations using the different activations 

functions are depicted in figure 8. Based on the results of these 

simulations, it was decided that the default activation function 

relu would be used going forward. 

 

This concluded the hyperparameter tuning portion of the 

project.  

 

B. Feature Ranking 

 

Next, one feature at a time was removed from the dataset and 

the change in prediction performance was measured to rank 

which features correlated most strongly to surface albedo. 

This simulation was done ten times and the averages were 

computed. 

 



  

 
Figure 9: Graph depicting average RMSE when the identified feature 

was removed. 

Based on the results of averaging the features, the four 

features that demonstrated the highest RMSE when removed 

were GHI, DNI, Solar Zenith Angle, and Cloud Type. This 

would imply that these features are most strongly correlated 

to surface albedo prediction. 

 

 
Figure 10: Table depicting average RMSE and standard deviation 

when the identified feature was removed. 

To gain more insights about the feature space, it was 

determined that principal component analysis should be done 

on the data. The first step in this process was to determine the 

variance of the dataset.  

 

  
Figure 11: Graph depicting the variance of the dataset. 

As seen in figure 11, the first three components contribute to 

71% of the total variance. After the first three components, 

the change in variance diminishes significantly. 

 
Next, simulations were run to measure the prediction 

performance using different numbers of principal 

components, from one to seven. 

 
Figure 12: Table depicting average RMSE with different numbers of 

principal components. 

As can be seen in figure 12, the lowest RMSE was obtained 

using only one principal component. One reason for this could 

be that the first principal component accounts for almost 40% 

of the variance. 

 

V. CONCLUSION AND FUTURE WORK 

In conclusion, the variance distribution indicates that the there 

are three principal components responsible for most of the 

variance in the dataset. The three features that correlated to 

surface albedo prediction most strongly were GHI, DNI, and 

Solar Zenith Angle. For future work, it could be beneficial to 

use an auto-encoder for dimensionality reduction and 

compare those results to the results obtained in this principal 

component analysis [9]. That could potentially give us more 

information about the feature space and how the features are 
related to each other. 
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