Feature Analysis for PV Fault Detection Neural Network
Using Linear PCA and Random Forest
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Solar farms greatly benefit from sensor monitoring systems with the capacity to

detect array faults and anomalies.

Automatic and remote detection and correction of faults elevates
the efficiency and robustness of a PV power plant.

Reduces monitoring and maintenance cost.
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e I|dentify which data features provide the most information to the neural
network about classifying solar array faults.
® Reduce redundant or unimportant data

Neural Network architecture

L (e Widemiayers = Declslon Layer mpnt
Curreﬁt
Voltage <7 N oy Shadlng
/ 'E’i& ;%i, — Standard Test Conditions
; .Eg N — Degraded Modules
Irradiance = — Short Circuit (1]
Gamma Soiling
%’b Ira A. Fulton o5 o . _
Schools of Engineering Axa University IRES SenSIP center IRES project sponsored by NSF
ARIZONA STATE UNIVERSITY of CyprUS https://sensip.engineering.asu.edu/nsf-ires-project/ Award 1854273



https://sensip.engineering.asu.edu/nsf-ires-project/

SenSIP

Experimental Methods and ML tools
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Linear Principal Component Analysis Implemented via Python

In [8]: #Creating neural network
def NN_model(Dim,pca,X_train, X_test, y_train, y test):

x_train = pca.transform(X_train)
P x_test = pca.transform(X_test)
24 . = #transform, just perfroms pca
o0 et All
5 L oL=>5
E 0+ PR - ,:O:. # define the keras model
Q L1 ER- model = Sequential()
x - o*° ..' model.add(Dense(Dim, input_dim=Dim, activation='relu'))
24 " w e " model.add(Dense(16, activation='relu'))
.9 H ER* #model . add(Dense(8, activation='relu'))
- model.add(Dense(OL, activation='sigmoid'))
model. compile(loss="'categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
_'4 __'2 6 é _'4 _'2 (') é '_4 _'.2 b 2' [8] model.fit(x_train, y_train, epochs=150, batch_size=128, verbose=1, validation_data=(x_test, y_test)
GATA3 GATA3 Projection onto PC1

# evaluate the keras model
_, accuracy = model.evaluate(x_test, y_test)
print('Accuracy: %.2f' % (accuracy*100))

return accuracy
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Experimental Methods and ML tools cont...
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Random Forest Algorithm Implemented via Python

In [6]: feature_names = Data.columns
feature_names = list(np.array(feature_names[0:9]).astype(str))
#feature_names = Llist(np.array(feature_names[0:10]).astype(str))

print('Feature names : ',feature_names)
Feature names : ['DC_Power', 'Vmp', 'Imp', 'Temp', 'Irr', 'Pmp', 'Voc', 'Isc', 'Gamma']
In [7]: forest = RandomForestClassifier(random_state=0)
W N eee forest.fit(X_train, y_train)
L Out[7]: RandomForestClassifier(random_state=0)
Tree-1 Tree-2 ; Tree-n f In [8]: importances = forest.feature_importances_
L4 g L 8
W -
In [9]: = np. : i f in f .esti is=0
Class-A Class-A Class-B n [9]: std = np.std([tree.feature_importances_ for tree in forest.estimators_], axis=0)

In [10]: forest_importances = pd.Series(importances, index=feature_names)
Majority-Voting
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The feature space can be reduced to 4 principal
B - components while retaining 85% accuracy.
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Random Forest Algorithm Results
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Using the random forest generated importances, the top 4 features provide the neural network with
enough information to classify faults at target accuracy.

Ranked features

FF

Voc

Pmp Imp vmp Temp Irr

Features

%l“ Ira A. Fulton o O ' _
Schools of Engineering  8%4% University

ARIZONA STATE UNIVERSITY

of Cyprus

Isc

100
95

85
80
75
70
65

Mean Accuracy

DC_PowerGamma

IRES SenSIP center

https://sensip.engineering.asu.edu/nsf-ires-project/

Fault Classification Accuracy by Number of
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® The feature space can be effectively optimized using both Linear Principal
Component Analysis and Random Forest importance rankings.

® The top 4 features in either method accounted for the majority of neural
network classification ability.

e Dependent features can play an important role in reducing the feature space
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Future Work
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Identifying the role of
dependent features
(features that are
combinations of others)

Shown right:

The inclusion of gamma
as power divided by
irradiance improves
overall classification
accuracy
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Challenges and Reflection Eell

INDUSTRY CONSORTIUM

e | familiarized myself with several facets of solar panel
optimization and solar data.

® | learned data science and machine learning techniques,
and implemented them in python.
o Setting up python environment
o Reading and writing data from excel
o PCA, random forest and neural network functionality
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