

Feature Analysis for PV Fault Detection Neural Network Using Linear PCA and Random Forest

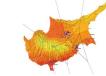
Skyler Verch¹, Gowtham Muniraju¹, Andreas Spanias¹, Yiannis Tofis² [1] SenSIP center ASU [2] KIOS Research and Innovation Centre of Excellence

Solar facility ASU [1]

Smart Monitoring Device (SMD) [1] Helps diagnose solar faults

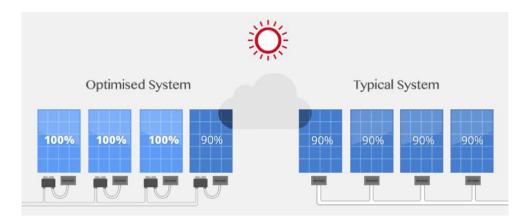
University of Cyprus https:

IRES SenSIP center <u>https://sensip.engineering.asu.edu/nsf-ires-project/</u>



Motivation

- Solar farms greatly benefit from sensor monitoring systems with the capacity to detect array faults and anomalies.
- Automatic and remote detection and correction of faults elevates the efficiency and robustness of a PV power plant.
- Reduces monitoring and maintenance cost.



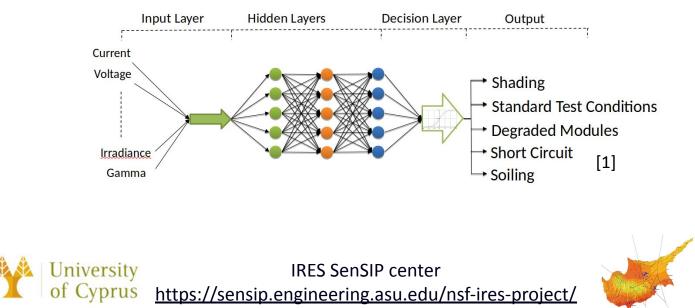
Ira A. Fulton

ARIZONA STATE UNIVERSIT

Schools of Engineering

Project Aim

- Identify which data features provide the most information to the neural network about classifying solar array faults.
- Reduce redundant or unimportant data



Neural Network architecture

Experimental Methods and ML tools

In [8]: #Creating neural network 2 All XBP1 XBP1 0 ER-ER+ [8] -2 -4 -2 0 2 -4 -2 0 2 -4 0 2 GATA3 Projection onto PC1 GATA3

Linear Principal Component Analysis

University

of Cyprus

Implemented via Python

def NN_model(Dinyca,X_train, X_test, y_train, y_test): x_train = pca.transform(X_train) x_test = pca.transform(X_test) #transform, just perfroms pca OL = 5 # define the keras model

model = Sequential()
model.add(Dense(Dim, input_dim=Dim, activation='relu'))
model.add(Dense(16, activation='relu'))
#model.add(Dense(8, activation='relu'))
model.add(Dense(0L, activation='sigmoid'))

model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
model.fit(x_train, y_train, epochs=150, batch_size=128, verbose=1, validation_data=(x_test, y_test)

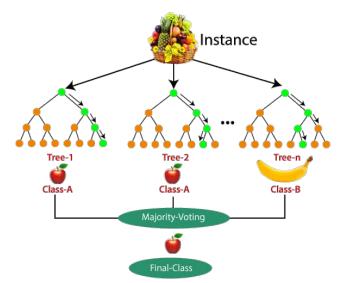
evaluate the keras model _, accuracy = model.evaluate(x_test, y_test) print('Accuracy: %.2f' % (accuracy*100))

return accuracy

IRES SenSIP center <u>https://sensip.engineering.asu.edu/nsf-ires-project/</u>

Experimental Methods and ML tools cont...

Random Forest Algorithm



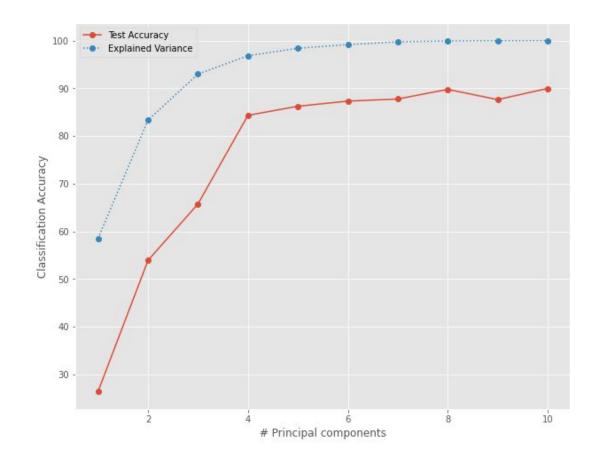
University

Implemented via Python

In [6]: feature_names = Data.columns feature_names = list(np.array(feature_names[0:9]).astype(str)) #feature_names = List(np.array(feature_names[0:10]).astype(str)) print('Feature names : ',feature_names) Feature names : ['DC_Power', 'Vmp', 'Imp', 'Temp', 'Irr', 'Pmp', 'Voc', 'Isc', 'Gamma'] In [7]: forest = RandomForestClassifier(random_state=0) forest.fit(X train, y train) Out[7]: RandomForestClassifier(random_state=0) In [8]: importances = forest.feature importances In [9]: std = np.std([tree.feature_importances_ for tree in forest.estimators_], axis=0) In [10]: forest_importances = pd.Series(importances, index=feature_names)

IRES SenSIP center of Cyprus https://sensip.engineering.asu.edu/nsf-ires-project/

Linear Principal Component Analysis Results



The feature space can be reduced to 4 principal components while retaining 85% accuracy.

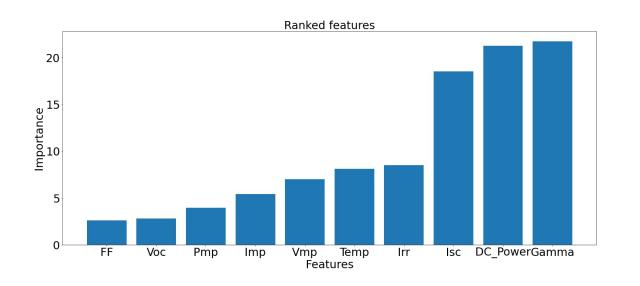
However, the Neural Network does not attain the target accuracy until 8+ principal components.

Data from the National Renewable Energy Laboratory (NREL)

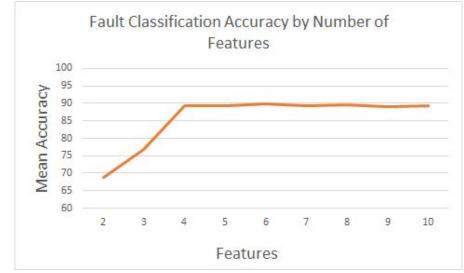
University IRES SenSIP center of Cyprus <u>https://sensip.engineering.asu.edu/nsf-ires-project/</u>

Random Forest Algorithm Results

Using the random forest generated importances, the top 4 features provide the neural network with enough information to classify faults at target accuracy.



of Cyprus



IRES SenSIP center https://sensip.engineering.asu.edu/nsf-ires-project/

Conclusions

IRES project sponsored by NSF

Award 1854273

- The feature space can be effectively optimized using both Linear Principal Component Analysis and Random Forest importance rankings.
- The top 4 features in either method accounted for the majority of neural network classification ability.
- Dependent features can play an important role in reducing the feature space

Future Work

https://sensip.engineering.asu.edu/nsf-ires-project/

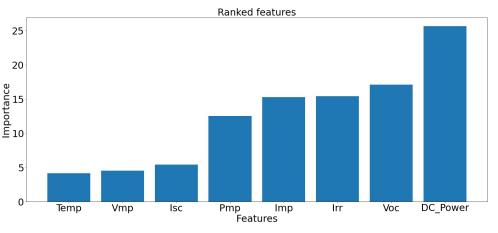
Identifying the role of dependent features (features that are combinations of others)

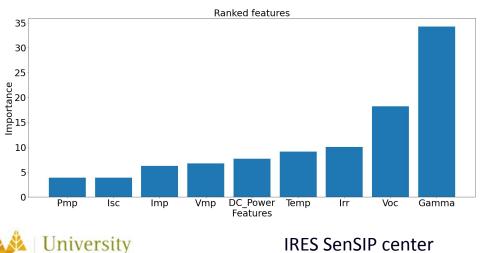
Shown right: The inclusion of gamma as power divided by irradiance improves overall classification accuracy

Ira A. Fulton

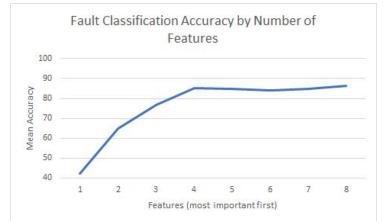
ARIZONA STATE UNIVERSITY

Schools of Engineering

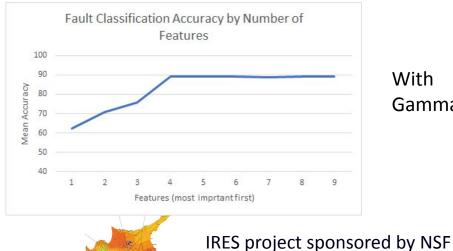




of Cyprus



Without Gamma



With Gamma

Award 1854273

Challenges and Reflection

- I familiarized myself with several facets of solar panel optimization and solar data.
- I learned data science and machine learning techniques, and implemented them in python.
 - Setting up python environment

University

of Cyprus

- Reading and writing data from excel
- PCA, random forest and neural network functionality

References

[1] S. Rao, S. Katoch, V. Narayanaswamy, G. Muniraju, C. Tepedelenlioglu, A. Spanias, P. Turaga, R. Ayyanar, and D. Srinivasan, "Machine learning for solar array monitoring, optimization, and control," Synthesis Lectures on Power Electronics, vol. 7, no. 1, pp. 1–91, 2020.

[2] Z. Chen, F. Han, L. Wu, J. Yu, S. Cheng, P. Lin, and H. Chen, "Random forest based intelligent fault diagnosis for pv arrays using array voltage and string currents," Energy conversion and management, vol. 178, pp.250–264, 2018.

[3] R. Fazai, K. Abodayeh, M. Mansouri, M. Trabelsi, H. Nounou, M. Nounou, and G. E. Georghiou, "Machine learning-based statistical testing hypothesis for fault detection in photovoltaic systems," Solar Energy, vol. 190, pp. 405–413, 2019.

[4] M. Hajji, M.-F. Harkat, A. Kouadri, K. Abodayeh, M. Mansouri, H. Nounou, and M. Nounou, "Multivariate feature extraction based supervised machine learning for fault detection and diagnosis in photovoltaic systems," European Journal of Control, vol. 59, pp. 313–321, 2021.

[5] W. Chine, A. Mellit, V. Lughi, A. Malek, G. Sulligoi, and A. M. Pavan, "A novel fault diagnosis technique for photovoltaic systems based on artificial neural networks," Renewable Energy, vol. 90, pp. 501–512, 2016.

[6] S. Khalid, T. Khalil, and S. Nasreen, "A survey of feature selection and feature extraction techniques in machine learning," in 2014 Science and Information Conference, 2014, pp. 372–378.

[7] I. T. Jolliffe and J. Cadima, "Principal component analysis: a review and recent developments," Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 374, no. 2065, p.20150202, 2016.

[8] M. Ringner, "What is principal component analysis?" Nature biotechnology, vol. 26, no. 3, pp. 303–304, 2008.

IRES SenSIP center <u>https://sensip.engineering.asu.edu/nsf-ires-project/</u>

