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Feature Ranking with Averages

O  Obtain weather data from NSRDB dataset.
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O  Pre-process data (standardization, one-hot encoding, train/test split). kil P
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U Determine how many layers, nodes, and iterations are optimal for neural network. g w'"dﬁ?.".ﬁg‘g’
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O Use RMSE as a metric to calculate the distance between ground truth and predicted surface albedo. e
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U  Evaluate RMSE with varying learning rates, activation functions, solvers, and batch sizes. T e =
U Use feature removal to rank which features correlate most strongly to surface albedo.
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RMSE using Different Learning Rates
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