A Probabilistic Approach to the **Positive and Unlabeled Learning Problem**

MOTIVATION

Traditional binary classification requires well-labeled data.

Both positive and negative labels:

Negative data is EXPENSIVE in many interesting problems.

Ex: Cancer Detection

Known positive set: People who have cancer

Unlabeled set: Everyone else

Finding true negatives – people who ABSOLUTELY do not have cancer – is expensive or impossible.

This leaves us with some positive and no negative labels.

Other examples:

- Fraud detection
- Terrorist detection
- Threat detection

SCAR ASSUMPTION

- U We assume that labeled positives are "Selected" **Completely At Random**" from the set of all positive samples.
- Means labeled and unlabeled sets are completely nonseparable.
- Means that there is a constant probability c that a positive sample is labeled.

Ira A. Fulton Schools of Engineering ARIZONA STATE UNIVERSITY

1.800.790.4001 WWW.GENIGRAPHICS.COM

Kristen Jaskie, Andreas Spanias

SenSIP Center, School of ECEE, Arizona State University.

https://sensip.asu.edu

	Αςςι	Accuracy	
	MLR	SLR	
Well Separated Data	98.32%	86.53%	
Mostly Separable Data	95.38%	65.78%	
Poorly Separable Data	90.58%	43.51%	

