A Probabilistic Approach to the
Positive and Unlabeled Learning Problem

Traditional binary classification requires well-labeled
data.
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Negative data is EXPENSIVE in many interesting problems.

) Ex: Cancer Detection
Known positive set: People who have cancer
Unlabeled set: Everyone else

Finding true negatives — people who ABSOLUTELY
do not have cancer — is expensive or impossible.

I This leaves us with some positive and
no negative labels.
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SCAR ASSUMPTION

] We assume that labeled positives are “Selected
Completely At Random” from the set of all positive
samples.

1 Means labeled and unlabeled sets are completely non-
separable.

1 Means that there is a constant probability c that a
positive sample is labeled.
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MOTIVATION GOAL RESULTS

] We compared SLR estimators in [1] with estimators
using our MLR over different data sets.

] Given data samples x and data labels y

] We want to learn a probabilistic classifier p(y = 1|x)
] Metric: mean accuracy of ¢ value estimate.

] Include a new random variable s:
If sample is labelled, s = 1, if unlabelled, s = 0
J It can be shown that
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] Constructed estimators for ¢ using a validation data.
Found to be INEFFECTIVE in practice.

SECURITY APPLICATION USING SENSORS

] Threat detection on military bases or
public venues

] Created a Modified Logistic Regression (MLR) to learn
non-traditional classifier p(s = 1|x)

] Introduced learned variable b into SLR equation: )
1

Given sensor input such as audio, video, satellite

Known positive set: Previous attacks
Unlabeled set: Everything else

Just because an attack didn’t occur, doesn’t
mean that a threat wasn’t present —

perhaps the attack was cancelled at the 0)
last minute.
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