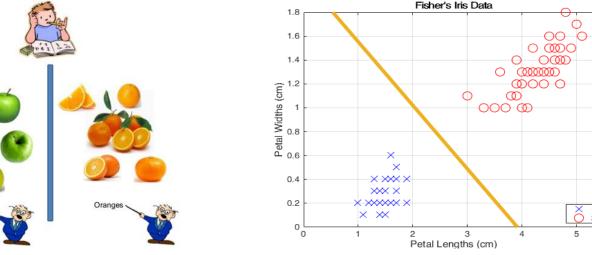


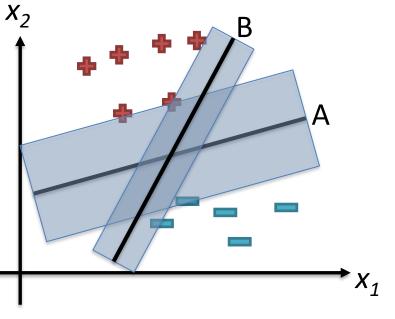
Machine Learning Methods and their Sensor and IOT Applications

Uday Shankar Shanthamallu¹, Andreas Spanias¹, Michael Stanley², and Cihan Tepedelenlioglu¹ ¹SenSIP Center, School of ECEE, Arizona State University, ²NXP Semiconductors

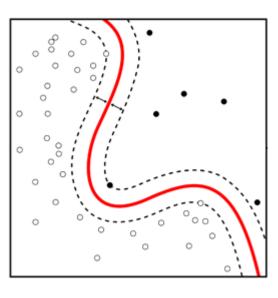
Supervised Learning	Cla
Ground Truth or True Label for the data is known	
Ground Truth is used in training an algorithm	
Unsupervised Learning	
Datasets do not have any associated labels	
 Unsupervised model's goal is to derive hidden structure in the data 	
Training Dataset is represented as table of values and labels	□ Th
Each training data can be represented in a pair	cla
$(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}) \dots (x^{(m)}, y^{(m)})$	
Machine learning model learns a hypothesis function	
f(x) which maps input x to output y n	
$m \qquad \qquad$	
'm' Training examples	
BASIC SIGNAL PROCESSING FRAMEWORK	DI
Basic signal processing framework includes windowing, followed by noise removal and feature extraction stage	Ar
Extracted features are trained in the classification stage by a machine learning algorithm	


This work is funded in part by NXP Semiconductors and the NSF NCSS I/UCRC.

Poster Template Designed by Genigraphics ©20 1.800.790.4001 www.genigraphics.com


PERVISED LEARNING ALGORITHMS (EXAMPLES)

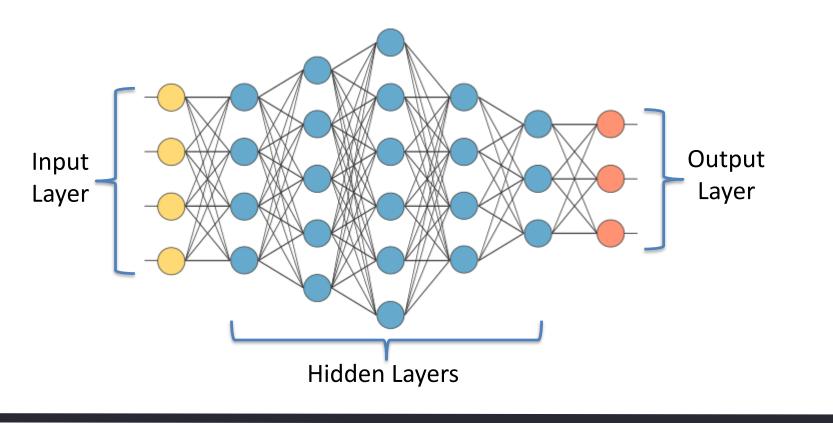
gistic Regression and Perceptron learning are methods for ssification. It maps input to discrete outcomes



e Support Vector Machine (SVM) algorithm is used for binary ssification. It obtains the best decision boundary (hyperplane)

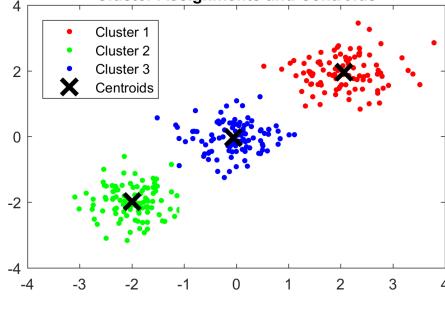
- The objective function is convex and finds a global minimum.
- The Kernel trick allows us to find a non-linear decision boundary

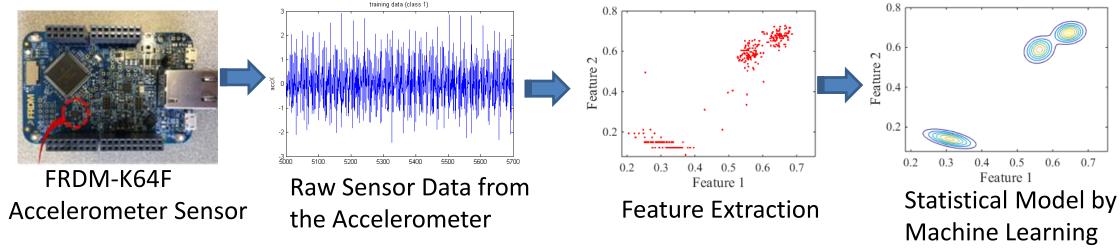
Linear Decision Boundary



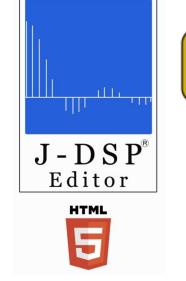
Use of kernel trick to find a non-linear decision boundary

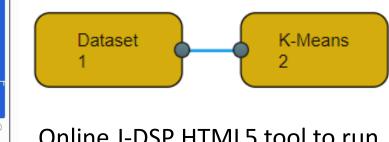
EP LEARNING – ARTIFICIAL NEURAL NETWORKS


tificial Neural network consists of many layers of neurons

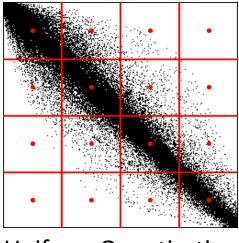

- Each layer learns a concept different from the previous layers
- The term "deep learning" refers to several layers used to learn multiple levels of abstraction

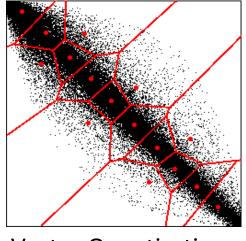
Clustering determines a structure or pattern in a collection of unlabeled data K-means iterative algorithm clusters data into K groups of equal variances


REFERENCE


Sensor Signal and Information Processing Center http://sensip.asu.edu

UNSUPERVISED LEARNING ALGORITHMS & SOFTWARE


Cluster Assignments and Centroids



Online J-DSP HTML5 tool to run K-means algorithm

Vector Quantization learns codebook vectors (centroids) for representing data

Uniform Quantization of 2-dimensional data

Vector Quantization of 2-dimensional data

USE OF ACCELEROMETER SENSOR IN IOT APPLICATIONS

□ Machine learning algorithm is implemented on an embedded sensor platform Accelerometer sensor data is used for training a machine learning model to perform anomaly detection

[1] U. Shanthamallu, A. Spanias, C. Tepedelenlioglu, M. Stanley, "A Brief Survey of Machine Learning Methods and their Sensor and IoT Applications," IEEE IISA 2017, Larnaca, August 2017.

[2] A. Dixit, S. Katoch, P. Spanias, M. Banavar, H. Song, A. Spanias, "Development of Signal Processing Online Labs using HTML5 and Mobile platforms," *IEEE FIE 2017*, Indianapolis, October , 2017.

