STATEMENT OF PROBLEM PROPOSED RESEARCH RESULTS

Partial shading in PV array systems

ICreate reliable fault detection methods to
increase efficiency of solar energy.

JAccurately detect when partial shading is
occurring.

IShading causes reduced power from the
modules not outputting the same voltage.

PRIOR WORK

1Using near neighbor communications on
aggregated data from households in the same
zip code to identify faults/partial shading.

1Using a Radial Basis Function Network to
detect conditions such as soiling/shading.
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Data Collection

—IUse Data from SolarEdge to form different PV

azimuth clusters for fault detection.

Ildentify sunny days near the Summer Solstice 0.06

for maximum daylight time.

INormalize data of sunny days that was

collected from numerous PV sites.

JApply K-means algorithm on to the data.
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INDUSTRY CONSORTIUM

IPreliminary k-means clustering results indicate a separation

K-means of Rooftop Azimuths
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CONCLUSION FUTURE WORK

_JGather more information from PV sites
for sunny days throughout a year to
create better K-means clustering.

ICompare PV sites with similar azimuths
to detect partial shading.
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0
Time (5 Minute Intervals)
Site 28 - June 22nd . . . .
: : JGained experience on basic machine
learning techniques.
_IDetermined from statistics of data
how many clusters to use.
_JKnowledge gained of array setups and
L L numerous types pf PV faults.
; SOTime(s Minde Intervals) o - _ILearning MATLAB coding and applied
Site 28 - June 24th the skills to real world applications.
241 IPresented material in an international
M | setting at the 12" annual CWSPI.
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