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Abstract

Owing to the suprasegmental behavior of emotional speech, turn-level features have demonstrated a better success
than frame-level features for recognition-related tasks. Conventionally, such features are obtained via a brute-force
collection of statistics over frames, thereby losing important local information in the process which affects the
performance. To overcome these limitations, a novel feature extraction approach using latent topic models (LTMs) is
presented in this study. Speech is assumed to comprise of a mixture of emotion-specific topics, where the latter
capture emotionally salient information from the co-occurrences of frame-level acoustic features and yield better
descriptors. Specifically, a supervised replicated softmax model (sRSM), based on restricted Boltzmann machines and
distributed representations, is proposed to learn naturally discriminative topics. The proposed features are evaluated
for the recognition of categorical or continuous emotional attributes via within and cross-corpus experiments
conducted over acted and spontaneous expressions. In a within-corpus scenario, sRSM outperforms competing LTMs,
while obtaining a significant improvement of 16.75% over popular statistics-based turn-level features for
valence-based classification, which is considered to be a difficult task using only speech. Further analyses with respect
to the turn duration show that the improvement is even more significant, 35%, on longer turns (>6 s), which is highly
desirable for current turn-based practices. In a cross-corpus scenario, two novel adaptation-based approaches, instance
selection, and weight regularization are proposed to reduce the inherent bias due to varying annotation procedures
and cultural perceptions across databases. Experimental results indicate a natural, yet less severe, deterioration in
performance - only 2.6% and 2.7%, thereby highlighting the generalization ability of the proposed features.
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Introduction
Emotion conveys important information about a speaker’s
mood or personality, which makes it an ideal choice for
improving human-machine interaction [1]. Speech-based
emotion recognition is applicable to automatic speech
recognition (ASR), spoken dialog systems (SDS) [2], auto-
mated call centers [3], education [1], entertainment [4],
patient care and post-traumatic stress disorders [5]. Since
emotions are highly specific to speakers, expression types,
cultures, or context, determining the appropriate set of
features that generalize well across such conditions is
considered a difficult and challenging task.
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Traditionally, speech is first segmented into turns based
on the voice activity of a speaker, followed by an extrac-
tion of frame-level features. Segmental approaches oper-
ate directly on these frames using static Gaussian mix-
ture models (GMM) [6], dynamic hidden Markov models
(HMM) [7,8], or their variants [9]. Based on studies indi-
cating the suprasegmental behavior of emotions [2,10],
turn-level features have shown to significantly outper-
form HMM-based approaches. Typically, such features
are obtained via statistics computed over the frame-level
features [11-13]. Functions commonly include moments,
extremes, percentiles, ranges, as well as the slope and
error of linear regression. Classification/regression is then
performed using various discriminative techniques such
as k-nearest neighbor [14], linear discriminant or support
vector classifiers [12], random forests [15], etc.
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It is difficult to choose the right statistics a priori, hence
a brute-force mechanism is typically used to extract 300
to 5,000 different features [11,16-18]. Often, feature selec-
tion is performed to obtain a reduced set. This selection
is highly specific to each database, thus features selected
for one database may be irrelevant on another set, leading
to poor generalization. Furthermore, due to turn-based
segmentation, turns are often long in duration depending
on the speaker’s activity. As the frame-level features are
normalized over a turn to obtain these statistics, impor-
tant local information, such as a short period of emo-
tional burst, might get lost and consequently affect the
performance.
To overcome these limitations, we propose a novel

approach for extracting turn-level features using latent
topic models (LTMs). LTMs are primarily used to extract
topics that capture the various themes from a collection
of text documents and their word occurrences. Extending
this model to emotional speech, we posit that each turn
(document) can be represented as a mixture of emotion-
specific topics. The topics, in turn, capture emotionally
salient information from the the co-occurrence behavior
of frame-level acoustic features (words). Turns with sim-
ilar emotions would exhibit a similar distribution over
topics, thus allowing the latter to be used as high-level
features for classification. Although such features do not
model the temporal structure, local information is cap-
tured from the word occurrences, making them better
suited for turns of longer durations as opposed to turn-
level statistics. More importantly, the proposed approach
offers a generative model-based explanation of how emo-
tionally relevant features can be learnt from speech, thus
overcoming the need for brute-force collection-based
methods.
Besides natural language processing [19-21], LTMs have

previously been used for human activity recognition [22],
image annotation and segmentation [23], and image-
based object recognition [24]. To the best of our knowl-
edge, our earlier [25] and current works are the first
to utilize LTMs for the purpose of learning emotion-
ally relevant features from speech. In [25], we showed
that topics derived via an unsupervised latent Dirich-
let allocation (LDA) model outperformed HMMs over
highly exaggerated emotions. Recently, replicated soft-
max models (RSM) [26], which are based on the idea of
distributed representations, have shown to outperform
LDA for text classification. In this paper, we use RSM
as a building block and extend our earlier work in a sig-
nificant manner while making notable contributions as
follows:

• A supervised replicated softmax topic model (sRSM)
to extract a set of naturally discriminative, turn-level
features is proposed.

• A point-wise mutual information-based measure is
proposed to qualitatively assess the relationship
between topics, emotions, and acoustic features.

• Cross-corpus adaptation using two novel strategies,
instance selection and weight regularization, is
presented.

Our first contribution addresses the shortcomings of
RSMs, which are primarily unsupervised and hence, the
inferred topics are not naturally suited for discrimina-
tive tasks. We incorporate supervised learning by devis-
ing an sRSM - a feed-forward neural network with its
initial weights obtained from an unsupervised RSM, fol-
lowed by fine-tuning the weights using backpropagation.
As opposed to random initialization, we use the RSM
as a pre-training stage, which learns topics that initially
capture properties of the underlying input only. Back-
propagation allows us to slightly perturb and refine these
topics with respect to the output labels, thereby, facili-
tating learning of features that are optimal for discrim-
inative tasks. RBMs for learning discriminative features
have also been proposed in [27,28], where a deep neural
network-based generalized discriminant analysis (DNN-
GerDA) was used to learn emotion-specific, turn-level
features. The proposed sRSM is fundamentally different
in the following key aspects: (i) DNN-GerDA employs the
Fisher discriminant criterion, which maximizes the ratio
of between-class variance to within-class variance, while
sRSM directly minimizes the cross-entropy error, which
is more appropriate for classification-related tasks [29,30];
(ii) DNN-GerDA assumes that the extracted features
are drawn from Gaussian class-conditional distributions,
while sRSM makes no assumptions regarding the statis-
tical properties of the inferred topics; (iii) DNN-GerDA
accepts arbitrarily distributed, real-valued observations as
input, whereas, sRSM models discrete, count-like obser-
vations commonly found in text collections; and (iv) the
discriminative features in [28] are learnt over turn-level
statistics extracted via brute-force as opposed to the
acoustic bag-of-words used in this work.
Our second contribution addresses the qualitative

aspects by providing a physical interpretation of the top-
ics in terms of high-level emotions and the frame-level
acoustic words. Using a normalized point-wise mutual
information-based measure between emotions and top-
ics learnt in an unsupervised manner, we show that the
former are nicely separated in the topic space - top-
ics that co-occur frequently with one emotion, rarely, or
never co-occur with other emotions.We further show that
topics induce a natural grouping over acoustic features
based on their energy distribution across frequency, which
indirectly relates to the emotional state.
Our final contribution addresses the generalization

ability via cross-corpus emotion recognition. Most
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cross-corpus studies [31-33] do not account for the vary-
ing annotation procedures and cultural perceptions across
corpora. These differences bias the classifier such that the
decision boundary learnt over the training corpus is ren-
dered sub-optimal for the test corpus. To reduce this bias
and improve cross-corpus performance, we propose two
novel adaptation-based approaches - (1) instance selec-
tion and (2) weight regularization. In the former approach,
we identify instances from the training corpus that are
wrongly classified according to the test corpus and train
a new classifier after removing such misleading instances.
In the latter approach, we modify the conventional L2-
norm regularization, which penalizes large weights, to
instead penalize the weights for being too different from
reference weights estimated over the test corpus. Our
instance selection approach differs from that of [34],
where the selection criteria is based on the distance in the
feature space as opposed to the classifier.
We perform experiments on two databases, USC

IEMOCAP [35] and SEMAINE [36], with acted and spon-
taneous expressions, respectively. We evaluate four sets
of features, obtained via unsupervised or supervised LDA
and RSM, for speaker-independent binary and categorical
and continuous prediction and show that sRSM provides
the best unweighted average recall in each scenario. We
further investigate the performance with respect to the
turn duration and demonstrate that sRSM and in gen-
eral, LTMs, are better suited to handle turns of longer
durations (>6 s) than turn-level statistics. Specifically, for
valence-based classification, which is considered to be a
challenging problem using only speech [12,13,37], sRSM
outperforms turn-level statistics by 16.75% over all the
turns of SEMAINE, and a remarkable 35% over turns
longer than 6 s. In a cross-corpus setting, adaptation using
instance selection and weight regularization demonstrates
a relative deterioration of only 2.6% and 2.7% respec-
tively, further highlighting the generalization ability of the
proposed features for speech emotion recognition.
The remainder of this paper is organized as follows.

First, we provide a background on latent topic models and
their extension for learning emotionally relevant features.
This is followed by a description of the experiments and
results for within and cross-corpus recognition. Finally,
we provide the conclusions and directions for future work.

Latent topic models
Latent topic models are based on the assumption that a
text document can be represented as a mixture of top-
ics, and each topic can be represented as a mixture over
a dictionary of words. For notation purposes, we describe
a document d in a collection of D documents as a stream
of N words V = [v1, . . . , vN ]. Each word, vn, is a K-
dimensional unit vector, where vnk = 1, if the nth word
belongs to the kth dictionary element. Given the observed

words of a document, the objective is to infer J latent top-
ics h1, . . . , hJ that maximize the joint likelihood of words
and topics, i.e. p(V, h). Since thematically similar docu-
ments will exhibit nearly similar distributions over the
latent topics, the latter can be used as intermediate or
high-level features for subsequent classification. LDA and
its supervised counterpart, sLDA, are quite well known
and hence are briefly described here. RSM and our pro-
posed extension to supervised RSM are covered in more
detail.

Latent Dirichlet allocation
LDA [21] can be depicted as a directed graphical model
as shown in Figure 1a. According to LDA, the process
for generating a document and its words is described as
follows:

• Choose J topics h ∼ Dirichlet(α)

• For each word vn in the turn -

– Choose a topic xn ∼ Multinomial(h)
– Choose a word vn ∼ p(vn|xn,W )

The topics h, sampled once for each document, are
drawn from a Dirichlet distribution parametrized by α.
xn is a J-dimensional, unit-basis vector indicating which
topic is active for the nth word. The relationship between
topics and words is defined by a matrix W of size J × K .
Each row of W, i.e. Wj·, is a discrete distribution over
K dictionary words. Inference in LDA involves the esti-
mation of hidden topics h and x given the words v for
each document, i.e. p(h, x|V,α,W ). Exact inference being
intractable, an iterative variational approximation method
is used in this study. A detailed description of this method
can be found in [21]. The parameters α and W are learnt
via the expectation-maximization (EM) algorithm.
In order to perform binary or multi-class, categorical

emotion recognition, a softmax regression-based classi-
fier is trained over the posterior topics h inferred from
the training examples. The classifier parameters, θ , are
estimated by minimizing the cross-entropy error with
standard L2 regularization, as per Equation 1. Here, 1{·} is
the indicator function, S denotes the number of training
examples, C denotes the number of classes, t(s) denotes
the ground truth for example s, and λ denotes the regu-
larization parameter. Iterative minimization is performed
using minibatch stochastic gradient descent with a batch-
size of 100 and a learning rate and momentum of 0.005
and 0.8, respectively.

L(θ) = −1
S

[ S∑
s=1

C∑
c=1

1
{
t(s) = c

}
log p

(
y(s) = c|h(s), θ

)]
+ λ

2
‖θ‖22

(1)
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Figure 1 Graphical model representation of (a) LDA and (b) sLDA. Plates (rectangular) drawn around nodes indicate replication, which
corresponds to the number of input observations or words in a document, i.e. N.

p
(
y(s) = c|h(s), θ

)
= exp

(
θTc h(s))∑C

l=1 exp
(
θTl h(s)) (2)

The output, y(s), defined by the softmax function
in Equation 2, returns the posterior probability for
each class. The label is then predicted by evaluat-
ing argmax p

(
y(s) = c|h(s), θ

)
. Similar expressions can be

derived for the case of predicting real-valued outputs
using linear regression.
Supervised LDA (sLDA) [38] differs from its unsuper-

vised counterpart in the following aspect: an additional
node y, the class label or output, is introduced as shown
in Figure 1b. The output, dependent on the topic indica-
tors x, is predicted according to Equation 3, where x̄ =∑N

n=1 xn represents the empirical topic frequencies. The
variable θ , which parametrizes the relationship between
the topic indicators and the output label, is estimated in an
iterative manner along with the topics. As a result, class-
specific information is considered while learning topics,
thereby leading to better discrimination in comparison to
LDA. Variational approximation is used to infer the latent
variables as described in [38]. The class label is predicted
by evaluating argmax θTmx̄. Equation 3 is specific to binary
or categorical classification; a similar expression can be
derived for regression.

ym ∼ exp
(
θTmx̄

)
∑C

l exp
(
θTl x̄

) (3)

Replicated softmaxmodel
RSM belongs to the family of undirected, energy-based
models known as restricted Boltzmann machines (RBMs)
[39]. The visible unit is modeled as a softmax unit instead
of a Bernoulli variable as in RBM [26], which facilitates
the modeling of occurrence or count-like observations.
A graphical representation of this model is shown in
Figure 2a. For a document with N words, the observation
V is anN ×K binary matrix, and h ∈ {0, 1}J are the binary
stochastic latent topics. The energy of this configuration

is defined as per Equation 4, while the conditional proba-
bilities of words and topics are defined as per Equations 5
and 6, respectively.

E(v, h) = −
N∑

n=1

J∑
j=1

K∑
k=1

Wnjkhjvnk−
N∑

n=1

K∑
k=1

vnkank−
J∑

j=1
hjbj

(4)

p(vnk = 1|h) =
exp

(
ank + ∑J

j=1 hjWnjk
)

∑K
q=1 exp

(
anq + ∑J

j=1 hjWnjq
) (5)

p(hj = 1|v) = σ

(
bj +

N∑
n=1

K∑
k=1

vnkWnjk

)
(6)

Here, Wnjk denotes the weight between visible unit n
that takes on value k and hidden topic j; bj is the bias of
hidden topic j, and ank is the bias of visible unit n that takes
on value k. σ(x) = 1/(1+exp(−x)) is the logistic function.
Ignoring the sequence in which words arrive, if the kth
unit for each word vn is forced to share its weight with the
kth unit of all the other words in the document, thenWnjk
can be written simply as Wjk . This process is depicted in
Figure 2b. The weight-sharing property reduces the num-
ber of parameters to be learnt from N × J × K to J × K
and also allows the model to account for documents of
different lengths. This property is essential for emotional
speech since the duration of a turn is not fixed and varies
depending on the speaker’s activity. The energy of the
configuration after weight-sharing is then defined using
Equation 7.

E(V, h) = −
J∑

j=1

K∑
k=1

Wjkhjv̂k −
K∑

k=1
v̂kak − N

J∑
j=1

hjbj

(7)

Here, v̂k = ∑N
n=1 vnk denotes the frequency with which

the kth dictionary element appears in the turn. Unlike
LDA, each word in an RSM is generated by multiple
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Figure 2 Graphical model representation of (a) RSMwithout weight-sharing, (b) RSM after weight-sharing, and (c) sRSM. In (a), the
weights are only shown for the nth word. Plates (rectangular) drawn around nodes in (b) and (c) indicate replication, which corresponds to the
number of input observations or words in a document, i.e. N.

topics, leading to distributed and richer representations.
Furthermore, the topics are inferred in a single pass via
Equation 6, offering a significant reduction in computa-
tional complexity.
The parameters, {W , a, b}, are estimated by maximiz-

ing the log-likelihood of the observed words, i.e. P(V) =∑
h exp(−E(V, h))/Z, where Z is the normalizing con-

stant. Exact learning is intractable, hence, we use an
approximate technique called contrastive divergence (CD)
algorithm [26,39]. The update rule for weights, according
to CD, is given in Equation 8. Here, η is the learning rate
and EmodelT represents the expectation with respect to the
distribution after running a Gibbs chain for T steps. T =
∞ is equivalent to maximum likelihood learning. Further
details on this technique and its convergence properties
can be found in [40]. Update equations can be derived
similarly for biases a and b.

�Wjk = η
(
Edata

[̂
vkhj

] − EmodelT
[̂
vkhj

])
(8)

In this work, RSM is trained for 200 epochs with a
batchsize of 100 and a learning rate and momentum of
0.002 and 0.8, respectively. For CD, we found T = 1
to be sufficient for generating good features. Classifica-
tion/regression is then performed over the inferred topics
h using softmax or linear regression as outlined earlier for
LDA, i.e. using Equations 1 and 2.

Supervised RSM
In order to devise an sRSM, we propose a fully con-
nected, feed-forward neural network (FNN) as shown in
Figure 2c. The input and hidden layer are the same as
that of an RSM, while the topmost layer performs out-
put prediction. For C-class, categorical recognition, the
top layer is a softmax layer and the output is computed

via Equation 2. Typically, an FNN is initialized with ran-
dom weights before using backpropagation to perform
fine-tuning. An sRSM differs from a conventional FNN in
the following aspect - instead of random initialization, we
use the weights obtained via CD learning of an RSM to
initialize the network. Thus, the RSM is treated as a pre-
training stage whose task is to learn initial weights that
capture properties of the underlying input observations
in an unsupervised manner. Backpropagation in an sRSM
can then be viewed as slightly perturbing these weights to
account for the output labels and as a result, learn features
that are better suited for the discriminative task under
consideration. For backpropagation in sRSM, we use the
cross entropy error as the cost function for classification
and the mean squared error (MSE) for linear regression.
Stochastic gradient descent is used to update the parame-
ters with a learning rate and momentum of 0.005 and 0.8,
respectively.
The advantage of using pre-trained weights can be seen

in Figure 3, which shows the classification error across
epochs, averaged over 100 runs. The results are dis-
played for the task of arousal-based, binary classification
on two databases, SEMAINE and USC IEMOCAP, which
are described in more detail in subsequent sections. It is
clearly evident that backpropagation over randomly ini-
tialized weights is prone to get stuck at a bad local optima
and yield a higher classification error. On the contrary,
pre-training using an RSM first models the observations
in an unsupervisedmanner and finds a good starting point
for the weights, which leads to a lower classification error.
It is important to note that the impact of pre-training

is higher for smaller databases. Here, the SEMAINE and
USC IEMOCAP databases consist of approximately 1,000
and 5,000 training examples, respectively. From Figure 3,
we can observe that there is a slight decrease in the
effectiveness of pre-training from SEMAINE to USC
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Figure 3 Effects of pre-training. A comparison of the classification error (%) between an sRSM with pre-trained and randomly initialized weights
on SEMAINE and USC IEMOCAP. The higher error achieved in the latter case is due to the parameters getting stuck at a bad local optima.
Pre-training overcomes this limitation and provides a better starting point using the input observations only.

IEMOCAP. To further investigate this behavior, we var-
ied the number of training examples used for fine-tuning
the sRSM. Using the same database, USC IEMOCAP,
Figure 4 shows that the difference in classification error
between pre-trained and randomly initialized sRSM grad-
ually declines as the training examples increase from 500
to 5,000.

LTM-based features for emotion recognition
Numerous frame-level features of the prosodic, voice
quality, spectral, and perceptual [41-43] kind have been
used previously for emotion recognition. In this work, we

only use energy, fundamental frequency (F0), and the first
12 Mel frequency cepstral coefficients (MFCCs) (ignor-
ing the 0th coefficient) as they have shown to be the
most successful across different databases. The features
are extracted using a frame and step size of 25 and 10 ms,
respectively, i.e. a frame rate of 100 frames/s. The first-
and second-order differences are appended to obtain a
42-D feature vector per frame. Energy and MFCCs are
extracted using the HTK Toolkit [44], while the F0 esti-
mates are extracted using the OpenEar Affect Recognition
Toolkit [16]. Principal component analysis (PCA) is fur-
ther applied to reduce the dimensionality to 13 features.

Figure 4 Impact of pre-training using training sets of different sizes. The difference in classification error (%) between an sRSM with pre-trained
and randomly initialized weights on USC IEMOCAP. Note the gradual decline in the difference as the number of examples available for fine-tuning
the sRSM is increased.



Shah et al. EURASIP Journal on Audio, Speech, andMusic Processing  (2015) 2015:4 Page 7 of 17

In order to learn topics over these frame-level features,
we must first define the equivalent terms for documents
and words. The definition of a document is straightfor-
ward; we consider each turn to be analogous to a text
document. A turn can thus be viewed as a stream of
multi-dimensional, real-valued frames, where the latter
still need to be converted to discrete values or symbols.
There are a number of methods for dictionary learning
and encoding; we use a simple vector quantization-based
approach to learn a dictionary of K candidate feature
vectors. Each frame vector is then denoted by the index
of the dictionary candidate it is closest to in terms of
the Euclidean distance. Each turn is a stream of discrete
words V = [v1, . . . , vN ], where N is the total num-
ber of words/frames in a turn. The topics, h, are then
inferred using either unsupervised or supervised LDA or
RSM, followed by classification or regression as described
earlier.
It is worthwhile to investigate and provide a physical

interpretation of topics in terms of their relationship with
emotions and the underlying acoustic words. Ideally, one
would expect to have as many topics as emotion cate-
gories, but, variations across speakers, spoken content,
and mannerisms cause the number of topics, J, to usually
lie between the number of emotions, C, and the dictio-
nary size, K. Among these topics, only a few may convey
emotion-specific information, while certain topics may be
present across all emotions and can be considered unin-
formative or irrelevant. In order to identify such topics,
we propose a normalized point-wise mutual information
(PMI) measure between the individual topics h and emo-
tions y. Thismeasure allows us to quantify the discrepancy
between the joint probability of h and y and their marginal
distributions under the assumption of independence. The
PMI is computed as per Equation 9, where 1 ≤ j ≤ J and
1 ≤ c ≤ C. The values are further normalized to a range of
[−1,+1] as described in [45] using Equation 10. Here, −1
indicates never co-occurring, +1 indicates always occur-
ring together, and 0 indicates independence. The most
informative topics for each emotion are then identified
and ranked by the decreasing order of their normalized
PMI values.

pmi(hj; yc) = log
p(hj, yc)
p(hj)p(yc)

(9)

npmi(hj; yc) = pmi(hj; yc)
−logp(hj, yc)

(10)

In Figure 5, we display the normalized PMI values for 64
topics, extracted using unsupervised LDA and RSM, for a
single male speaker across the four emotions (neutral, sad,
happy, angry) of USC IEMOCAP. We observe topics that

exhibit a high co-occurrence with sadness to occur never
or rarely with angry or happy emotions. Similar observa-
tions can be made for the vice versa case. Hence, even
without using any label information while learning topics,
we can observe that the emotions are nicely separated in
the topic space, with sad and happy topics being the most
easily distinguishable from each other. The only exception
is neutral; very few topics show a high co-occurrence with
only neutral emotions, with a majority of them also co-
occurring with the other three emotions. Between LDA
and RSM, we can observe that the topics obtained via
LDA capture neutral emotions slightly better than RSM,
i.e. the highly ranked topics for neutral emotions co-occur
less with other emotions. On the other hand, RSM rep-
resents the remaining emotions such as sad, happy, and
angry better than LDA.
Taking further advantage of the generative mechanism

of topic models, we can also interpret the relationship
between topics and the underlying acoustic words. We
identify the most probable words, using the weight matrix
W characterizing p(v|h), under the highest ranked topic
for each emotion. The spectrograms, reconstructed from
theMFCCs, for the top 3 words are shown in Figure 6. For
acoustic words grouped under sad or neutral topics, we
observe that most of their energy is concentrated at lower
frequencies (<2,000 Hz). In comparison, words grouped
under happy or angry topics show that the energy is more
spread out across frequency. Thus, it can be said that the
individual topics induce a natural grouping over acoustic
words primarily based on their energy distribution across
different frequencies.
Evident from both, the normalized PMI values and the

most likely words for individual topics, there is a strong
overlap between happy-angry and neutral-sad emotions.
The inability to visualize distinguishable characteristics
across the valence axis is a well-known limitation of
speech, which is more reactive to changes along the
arousal dimension. Our experiments in the subsequent
section will highlight the importance of LTMs, which
allow us to represent a turn as a mixture of multiple top-
ics, towards classification, especially along the valence
dimension.

Within-corpus emotion recognition
In this section, we describe the experiments for evalu-
ating the proposed features in a within-corpus setting,
where the train and test examples belong to the same
corpus.

Databases
The USC IEMOCAP [35] corpus was built by asking five
pairs of male-female actors to elicit emotions either by
reading from a script or via improvisation in a conversa-
tional setting. There are a total of 151 dialogs which, after
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Figure 5 Qualitative interpretation of emotions and topics using (a) LDA and (b) RSM. The normalized PMI between 64 topics and four
emotions reveals that individual topics capture emotion-specific information. Topics obtained via LDA capture neutral emotions slightly better than
RSM, whereas, the latter achieves better separability in case of the remaining emotions - sad, happy, and angry.

turn-based segmentation, yield a total of 10,039 turns. At
least three evaluators assigned a categorical attribute to
each turn. Attributes include neutral, sad, happy, excited,
angry, frustrated, surprised, disgust, fear, and unknown.
Following the selection criteria outlined in [8,11,46], only
those turns for which a majority consensus was reached
among the evaluators are considered in this study. Of
these, turns labeled as neutral, sad, happy, excited, and
angry are selected, while the remaining attributes are
not considered as they are under-represented. Happy and
excited are treated as the same emotion and merged as
one class. This results in a total of 5,531 turns distributed
across ten speakers and four emotions: neutral (1,708), sad
(1,084), happy (1,636), and angry (1,103).
The SEMAINE [36] corpus consists of spontaneously

expressed emotions elicited via interaction with human
operators enacting characters with pre-defined emotional

traits. The corpus consists of a total of 95 sessions
recorded from 24 speakers, of which, 82 sessions include
a force-aligned transcript necessary for turn-based seg-
mentation. Each turn is annotated at a frame rate of
20 ms by atleast two evaluators with real-valued arousal
and valence attributes. For each attribute, the average
value across all evaluators is calculated per frame, fol-
lowed by an average over all the frames in a turn to
yield a single value. For regression tasks, this value is
treated as the ground truth. While, for binary classifi-
cation, the global mean calculated over all the turns is
used to threshold and obtain a 0 (low arousal/negative
valence) or 1 (high arousal/positive valence) binary label
for each turn. Following the specifications provided in
the 2011 Audio-Visual Emotion Challenge [18], turns are
partitioned into three speaker-disjoint sets: train (1,185),
development (960), and test (673).

Figure 6 The top 3 probable acoustic words for the highest ranked emotion-specific topics obtained using RSM. The words are visualized
via spectrograms reconstructed from the MFCCs. Individual topics induce a natural grouping over acoustic words based on their underlying
distribution of energy across frequency.
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Baseline andmetrics
In addition to comparison between different LTMs (LDA,
sLDA, RSM, and sRSM), we consider two baseline
approaches - IS09 and VQ. The former comprises of a
set of 384 brute-force-based statistical features and is the
popular choice among researchers as evident from its
use in the 2009 InterSpeech and 2011/2012 AVEC chal-
lenges [17,18,47]. These features were extracted using the
openEAR Affect Recognition toolkit [16]. Classification
is performed via a linear kernel SVM/SVR trained using
the WEKA toolkit [48]. Results for the second baseline
approach, VQ, are obtained via a linear kernel SVM/SVR
trained directly over the acoustic word occurrences. This
allows us to assess the relative gain offered by LTMs.
We use the weighted average (WA) and unweighted

average (UA) recall metrics, as defined in [17], to evaluate
binary or categorical recognition performance. The for-
mer is defined as the average classification accuracy, while
the latter is defined as the average of the class-wise accu-
racies. These metrics are calculated using Equation 11.

WA = 100 · m
M

UA = 100 · 1
C

C∑
c=1

mc
Mc

(11)

Here,m denotes the number of examples correctly clas-
sified, andM denotes the total number of examples. Simi-
larly,mc andMc denote the number of examples correctly
classified and total number of examples, respectively, for
a specific class c. Since UA recall is more appropriate for
unbalanced datasets, statistical significance over the base-
line is determined using a one-tailed test (difference of
proportions) over the UA recall values. Unless mentioned
otherwise, the confidence level is higher than 95%. Finally,
the correlation coefficient (COR) is used to evaluate per-
formance for regression tasks.

USC IEMOCAP
To ensure speaker independence, we performed exper-
iments using a leave-one-speaker-out (LOSO) strategy,
resulting in a 10-fold process corresponding to the ten
speakers. For each fold, we first normalized the frame-
level features of the test partition to have the same mean
as that of the training partition. We further learnt dictio-
naries of multiple sizes, K ∈ {64, 128, 256, 512}, while the
number of topics J ∈[K/4,K/2]. The optimal values of K
and J are highly dependent on the training examples, thus
vary for each fold. Cross-validation over the training set
was used to determine their optimal values.
The WA and UA recall values are presented in Table 1.

Classification over acoustic words, i.e. VQ, yields a rea-
sonable performance of 52.18%. LDA and RSM show a
relative increase of 6.31% and 11.51%, respectively, over
VQ. Supervised learning leads to further improvements
as demonstrated by the better recall obtained using sLDA

and sRSM over their respective unsupervised counter-
parts.
Compared to IS09, LDA shows a marginal improve-

ment; however, RSM and sRSM demonstrate significant
improvements with a recall of 57.92% and 59.03%, respec-
tively. Relatively, RSM and sRSM offer gains of 5% and
7% over IS09, respectively. Compared to earlier works,
our method clearly outperforms the UA recall of 50.69%
achieved using HMMs inMetallinou et al. [8]. It also com-
pares well with the previous best result of Lee et al. [46],
where a recall of 58.46% was achieved using the IS09 fea-
ture set combined with a hierarchical decision-tree-based
classifier. Since the train and test partitions in these works
differ slightly from our experiments, an exact comparison
is not feasible.
Further inferences can be drawn from the class-wise

accuracies provided in Table 1. We observe that speech-
based methods are best at recognizing sadness while
achieving similar performances for happy and anger. In
case of neutral emotions, sRSM shows a 56.38% accuracy,
which is better than the previous best of 54.54% obtained
by Lee et al. [46] and 35.23% of Metallinou et al. [8]. The
difficulty in recognizing neutral emotions is also evident
from the inter-evaluator agreement - of the 1,708 neutral
turns in this set, evaluators were in complete agreement
for only 340 turns, i.e. 19.9%. Whereas, across all emo-
tions, human evaluators were in complete agreement with
each other for only 2,040 out of 5,531 turns (36.88%).
Given such ambiguity inherent in perceiving even acted
expressions, the overall improvement in recall achieved
here is of significant value.
Compared to IS09, we observe that RSM/sRSM per-

forms slightly worse at recognizing anger. This can be
attributed to the different frame-level features used across
the two approaches. In our work, bag-of-words features
are constructed from F0, energy, and MFCCs. In con-
trast, the IS09 feature set uses two additional frame-level
features: zero crossing rate (ZCR) and harmonic-to-noise
(HNR) ratio. In [46], the same feature set combined
with a tree-based classification scheme provided a sim-
ilar recall for anger as IS09. This further suggests that
the higher recall achieved on anger is mainly due to the
type of features and not dependent on the the type of
classifier.
From an unsupervised RSM to an sRSM, we can observe

a slight deterioration towards recognizing sadness. This
effect is well explained by the imbalance across different
classes in the training examples. The cross-entropy error
loss function aims to maximize the average classification
accuracy, i.e. WA recall. Owing to the higher number of
neutral and happy utterances, the topics learnt during
the fine-tuning stage of sRSM are slightly biased towards
these emotions. In order to address this issue, one can
restrict each class to have the same number of examples
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Table 1 Recall values (%) for categorical recognition on USC IEMOCAP

Metric IS09 VQ LDA sLDA RSM sRSM

Neu 53.62 39.64 51.70 52.46 49.88 56.38

Sad 62.45 71.31 66.79 67.34 74.72 70.39

Hap 47.00 54.10 50.37 51.53 54.77 54.76

Ang 57.57 49.95 52.04 52.95 52.31 54.58

WA 54.17 52.18 54.33 55.20 56.68 58.29

UA 55.14 51.94 55.22† 56.07† 57.92∗† 59.03∗†

Symbols ∗ and † indicate statistical significance over IS09 and VQ, respectively.

during training, i.e. a balanced dataset. Alternatively, one
can also modify the loss function in Equations 1 to 12,
where the training examples are individually weighted,
w(s).

L(θ) = − 1
S

[ S∑
s=1

C∑
c=1

w(s)1
{
t(s) = c

}
log p

(
y(s) = c|h(s), θ

)]
+ λ

2
‖θ‖22

(12)

SEMAINE
Cross-validation was not required for this database, since
the training, development, and test partitions, as specified
in [18,47], do not overlap in the speakers. The frame-level
features are normalized as per the method outlined ear-
lier for USC IEMOCAP. The development set was used
to select the model parameters, i.e. the dictionary size,
K ∈ {64, 128, 256}, and number of topics, J ∈ [K/4,K/2].
Results are reported for both partitions, development, and
test.
The results for arousal-based, binary classification and

regression are shown in Table 2. As observed for the
USC IEMOCAP database, LTMs outperform simple VQ-
based features. Specifically, LDA and RSM achieve rela-
tive gains of 1.5% and 13.7%, respectively. Topics learnt
in a supervised manner, as expected, lead to even
further improvements; 7.6% and 14.6% for sLDA and
sRSM, respectively. Compared to IS09, the proposed
features demonstrate a significant improvement on the

development set. Whereas on the test set, LDA and sLDA
perform worse than IS09. RSM and sRSM are marginally
better with relative gains of 0.7% and 1.4%, respectively.
In case of regression, however, LTMs outperform IS09 on
both the sets. Once again, sRSM yields the best perfor-
mance with a COR of 0.384 and 0.444, compared to 0.238
and 0.288 using IS09, on the development and test sets,
respectively.
Table 3 shows a comparison for the case of valence-

based, binary classification and regression. Compared
to VQ, LDA and RSM demonstrate an improvement
of 8.8% and 10.3%, respectively. Once again, supervised
learning via sLDA or sRSM improves upon its unsuper-
vised counterparts. Unlike arousal, LTM-based features
comprehensively outperform IS09 features. The latter, in
this case, performs slightly worse than chance. Again,
the best recall is obtained using sRSM - relative gains of
12.1% and 16.75% over IS09 on the development and test
sets, respectively. In case of regression, sRSM obtains a
COR of 0.349 and 0.171 on the development and test sets
respectively, which is clearly better than 0.191 and 0.007
obtained using IS09.
The results obtained on SEMAINE are comparable to

earlier works; in [49], a WA recall of 64.98% (arousal) and
63.51% (valence) was achieved using SVM and AdaBoost
over statistics-based features. While, in [50], an UA recall
of 65.7% (arousal) and 65.4% (valence) was achieved using
a bag of HMMs approach. In each of these studies, the

Table 2 Results for arousal-based classification and regression on SEMAINE

Metric IS09 VQ LDA sLDA RSM sRSM

Development set

WA 60.73 60.72 63.85 65.31 66.04 66.35

UA 61.08 60.81 64.03 65.39† 66.02∗† 66.38∗†

COR 0.238 0.325 0.350 0.364 0.357 0.384

Test set

WA 67.16 66.86 67.90 71.03 71.47 72.66

UA 63.46 56.17 57.05 60.49 63.90† 64.38†

COR 0.288 0.255 0.312 0.322 0.430 0.444

Classification results are expressed in percentage (%). Symbols ∗ and † indicate statistical significance over IS09 and VQ, respectively.
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Table 3 Results for valence-based classification and regression on SEMAINE

Metric IS09 VQ LDA sLDA RSM sRSM

Development set

WA 59.61 58.33 63.03 64.10 65.50 66.45

UA 57.64 56.51 58.86 61.96† 63.53∗† 64.62∗†

COR 0.191 0.191 0.330 0.332 0.327 0.349

Test set

WA 49.93 51.56 55.13 57.21 56.32 57.80

UA 49.68 51.54 56.12∗ 57.63∗† 56.88∗† 58.00∗†

COR 0.007 0.045 0.128 0.154 0.127 0.171

Classification results are expressed in percentage (%). Symbols ∗ and † indicate statistical significance over IS09 and VQ, respectively.

features were extracted over individual spoken words as
opposed to turns, hence, a direct comparison with our
approach is not feasible.
Based on the above experimental results on USC

IEMOCAP and SEMAINE, we can make the follow-
ing observations. Firstly, LTMs learn simplified, yet
better, representations over acoustic words and their
co-occurrences as demonstrated by the clearly higher
recall obtained over VQ. Secondly, the performance dif-
ference between LDA and RSM can be attributed to the
latter’s distributed representations. In LDA, each word in
a turn is assigned to a single topic, while, in RSM, each
word is modeled bymultiple topics. This allows each topic
in the latter to define elementary features and their com-
bination to give rise to more complex and richer represen-
tations. Combined with a lower complexity of inference,
RSM-based approaches are more suited for tasks involv-
ing real-time recognition. Thirdly, learning topics in a
supervised manner is highly beneficial, as evident from
the improvements obtained using sRSM over competing
LTMs on both databases. Finally, except for arousal-based
binary classification on the test set of SEMAINE, each
LTM outperforms turn-level statistics, i.e. IS09. These
improvements are significantly higher for regression and
valence-based classification over the spontaneous expres-
sions of SEMAINE, suggesting that the co-occurrence
information captured by the topics is highly representative
of the underlying emotional content.

Effect of turn duration
As a result of the turn-based segmentation procedure,
the duration of a turn varies depending on the speaker’s
activity. Turns are often long and and may consist of
multiple emotions expressed in varying degrees and no
seemingly regular structure. Consider, for example, neu-
tral speech with occasional bursts of emotional activity.
Here, we describe the experiments conducted to examine
the behavior of features with respect to the turn duration.
To this extent, we split all the turns in three categories
based on their duration: <1.5 s, 1.5 to 6 s, and >6 s.

The UA recall over each category is used to compare the
behavior of IS09 and sRSM-based features.
For USC IEMOCAP, there are 408, 3,832, and 1, 291

turns in each category, respectively. The class-wise accu-
racy across the four emotion categories and their average
is shown in Figure 7. The relative improvement from
the shortest to the longest duration is 7.87% for IS09
while 14.38% for sRSM. The absolute difference in UA
recall between sRSM and IS09 for turns less than 1.5 s
is −0.04%, whereas the difference for turns longer than 6 s
is 6.4%. Emotions such as sad, happy, and angry are rec-
ognized with a higher accuracy as the duration increases,
yet their accuracy is surprisingly low for shorter duration
turns. This is probably due to the unavailability of enough
sad/happy/angry examples with shorter durations. For
instance, of the 408 turns with duration less than 1.5 s,
47% are neutral.
The decline in recall rate of neutral speech, for either

feature set, as the duration increases is particularly inter-
esting, since a similar trend is not evident from the
ground truth labels provided by human evaluators. The
percentage of turns for which there is complete agreement
for the three duration categories shows an increasing
trend - 15.10%, 18.63%, and 28.42%. Figure 8 shows the
average posterior probability for all the misclassified, neu-
tral utterances in USC IEMOCAP across the three dura-
tion categories. We can observe that these utterances tend
to be misclassified as either happy or sad. Yet, the neutral
content is captured as a secondary or minor emotion with
slightly lower probability estimates. One may consider the
emotional profile (EP) framework presented in [11] as a
possible solution, which allows us to account for major-
minor emotions in order to resolve such ambiguity. This
framework is independent of the type of features or clas-
sifiers used and can be easily combined with the proposed
approach.
For SEMAINE, there are 350, 373, and 237 turns in each

duration category for the development set and 347, 219,
and 107 for the test set. The results for arousal and valence
classification are shown in Tables 4 and 5, respectively. For
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Figure 7 Effect of turn duration. A comparison between the recall obtained using IS09 and sRSM for turns of different durations in USC IEMOCAP.
Note the increase and relatively better performance of sRSM as the duration of a turn increases from less than 1.5 s to greater than 6 s.

arousal, IS09 and sRSM are quite similar as one outper-
forms the other, either on the development set or the test
set. On the other hand, sRSM achieves a significant gain
over IS09 for valence discrimination - 26.9% and 35% on
the development and test set, respectively.
Experimental results on both, USC IEMOCAP and

SEMAINE, indicate that sRSM, and, in general, LTMs are
better suited to handle turns of longer durations. The
extraction of turn-level statistics loses important local
information, such as bursts of emotional activity, as the
frame-level features are normalized over the turn. LTMs,
in spite of generating turn-level descriptors, capture some
local information from the word occurrences. The neces-
sity for retaining such information is particularly relevant
for valence-based discrimination, where sRSM demon-
strates a significantly better recall over all turns and an
even further improvement over turns longer than 6 s.

Cross-corpus emotion recognition
Speaker-independent, within-corpus evaluations are use-
ful for preliminary validation of an approach. However,

real-world scenarios involve cases where the data does not
belong to the same domain as the one used for training
the system. For example, changes in elicitation techniques
(acted vs. spontaneous), language, culture, accent, etc. are
quite common. Cross-corpus evaluations, in such cases,
can provide a more reliable measure of how well the
approach generalizes across such differences.
The same databases, USC IEMOCAP and SEMAINE,

are used in our experiments. We first preprocess the
data to compensate for differences in recording condi-
tions. Various methods, such as z-normalization [31] or
min-max normalization [32], have been applied at the
speaker and corpus level for this purpose. We follow a
corpus normalization approach, where we normalize the
frame-level features of the training and test corpus to
have the same mean. Accordingly, if Mtrain and Mtest are
the respective mean vectors of the training and test cor-
pus, then each frame of the test corpus is multiplied
by Mtrain/Mtest. After normalization, we obtain acous-
tic words and topics according to the dictionary and
topic models learnt over the training corpus. Secondly, to

Figure 8 Error analysis of neutral utterances across different duration categories using sRSM. The average posterior probability estimates for
all misclassified neutral utterances in USC IEMOCAP. Although utterances tend to get misclassified as happy or sad, the neutral content is captured
as the secondary emotion with slightly lower probability estimates. This further indicates the presence of multiple emotions and ambiguity as the
turns become longer in duration.
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Table 4 Effect of turn duration for arousal-based
classification on SEMAINE

Features < 1.5 1.5 to 6 >6

Development set

IS09 54.78 51.41 62.85

sRSM 70.32∗ 63.46∗ 65.72

Test set

IS09 54.93 60.65 76.31

sRSM 64.92∗ 56.52 73.01

Results are expressed in percentage (%). Symbol ∗ indicates statistical
significance over IS09.

ensure a valid comparison, the labels must be the same
across each corpus. As described earlier, the turns of
USC IEMOCAP were labeled categorically, while those
of SEMAINE were labeled with binary arousal/valence
attributes. The four categories of USC IEMOCAP are
converted to binary, arousal (low - neutral/sad, high -
happy/angry), and valence (negative - sad/angry, positive -
neutral/happy) attributes.
We denote the topics extracted over all turns of the

training and test corpus as htrn and htst, respectively. The
rows of h correspond to turns while the columns to topics.
For the test corpus, we further split htst into two disjoint
partitions - (1) htst,l, a set of turns with labels ytst,l; and
(2) htst,u, the set of unlabeled turns for which we wish
to predict labels. When SEMAINE is designated as the
test corpus, htst,l corresponds to the features extracted
from the training set of SEMAINE, while htst,u corre-
sponds to the test set. Alternatively, whenUSC IEMOCAP
is designated as the test corpus, htst,l corresponds to a
set comprising of nine out of ten speakers, while htst,u
corresponds to the remaining speaker. This process is
repeated for each of the ten speakers, resulting in a 10-fold
process.
According to conventional cross-corpus experiments

conducted earlier [31,51], the test corpus is evaluated
using the parameters, θ�, of the classifier learnt over the

Table 5 Effect of turn duration for valence-based
classification on SEMAINE

Features <1.5 1.5 to 6 >6

Development set

IS09 53.56 52.53 52.74

sRSM 58.26 67.93∗ 66.95∗

Test set

IS09 50.50 53.09 43.96

sRSM 57.75 55.29 59.36∗

Results are expressed in percentage (%). Symbol ∗ indicates statistical
significance over IS09.

training corpus as per Equation 13, where L is the cost
function. These works do not account for the fact that
emotions are perceived differently across geographical
regions or cultures causing the annotations to be biased
to their respective databases. In other words, even if the
definition of labels are same across corpora, there is a
significant difference between p(ytrn|htrn) and p(ytst|htst).
Hence, the decision boundary learnt over the training cor-
pus is no longer optimal for the test corpus. The results
obtained in this case also indicate the joint performance
loss due to both, the features and the classifier.

θ� = argmin
θ

1
N

N∑
i=1

L
(
ytrni , htrni ; θ

) + λ

2
‖θ‖22 (13)

In order to improve the cross-corpus performance and
determine the generalization of solely the topic features,
we propose two approaches to compensate for this bias.
In each of these approaches, we will assume that a
few labeled turns from the test corpus are available, i.e.
htst,l, and that we can learn parameters θ̂ characteriz-
ing p

(
ytst,l|htst,l

)
. Using θ̂ as a guide, we then learn new

parameters from the training corpus such that the deci-
sion boundary changes to reflect the distribution of the
test corpus.

Instance selection
In this approach, we identify instances in the train-
ing corpus that are not modeled well according to
p

(
ytst,l|htst,l, θ̂

)
. Such instances can be viewed as mislead-

ing or confusing, hence removing them would serve to
bring p

(
ytst|htst, θ)

closer to
(
ytst,l|htst,l, θ̂

)
. Accordingly,

we first evaluate htrn on θ̂ . We then select the top k or
all instances that are correctly classified and assign a large
weight to these instances, while we assign a smaller weight
to the wrongly classified instances. The new parameters
θ� are now estimated via Equation 14, where αi indi-
cates the weight assigned to each instance. We follow a
simple procedure to set the weights: αi = 1 if correct,
else αi = 0.

θ� = argmin
θ

1
N

N∑
i=1

αiL
(
ytrni , htrni ; θ

) + λ

2
‖θ‖22 (14)

Weight regularization
The differences between p

(
ytrn|htrn, θ)

and
p

(
ytst,l|htst,l, θ̂

)
can alternatively be explained by the dif-

ference in their weights θ and θ̂ . In traditional L2-norm
regularization, i.e. Equations 13 and 14, we penalize the
weights from becoming too large. If instead, we penalize
the difference, ‖θ̂ − θ‖22, from being large, then we will
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effectively learn weights θ → θ̂ . Parameters θ�, in this
case, are learnt as per Equation 15.

θ� = argmin
θ

1
N

N∑
i=1

L
(
ytrni , htrni ; θ

) + λ

2
‖θ̂ − θ‖22 (15)

Results and discussion
The best within-corpus (WC) results are obtained as per
our experiments described in the earlier section. In addi-
tion to different methods used to elicit emotions, USC
IEMOCAP and SEMAINE are also recorded and anno-
tated using subjects belonging to different cultures. The
former comprises of American speakers, while the lat-
ter comprises of speakers from eight countries across
Europe. These factors affect the performance such that the
cross-corpus recall will, in general, be lower than under a
within-corpus setting [31].
The UA recall obtained using a conventional cross-

corpus strategy without adaptation for different LTMs and
train/test scenarios are shown in Figure 9. For LDA, sLDA,
RSM, and sRSM, the average deterioration across all the
scenarios is 11.1% ± 3.3%, 6.6% ± 3.1%, 8.7% ± 3.3%,
and 5.2% ± 3.4%, respectively. The recall values for cross-
corpus using instance selection are presented in Figure 10.
In this case, the average deterioration across all the sce-
narios is 8.1% ± 1.7%, 5.1% ± 1.7%, 5.3% ± 2.4%, and
2.6% ± 1.8 for LDA, sLDA, RSM, and sRSM, respectively.
Similar results for cross-corpus using weight regulariza-
tion are shown in Figure 11. The average deterioration
across all the scenarios is 7.5%±4.1%, 5.8%±3.6%, 5.3%±
3.9%, and 2.7% ± 2.3% for LDA, sLDA, RSM, and sRSM,
respectively.
The improvements demonstrated by either adaptation

strategy over a conventional approach confirm the exis-
tence of a classifier-specific bias due to varying percep-
tions across corpora. Adaptation successfully reduces this

bias by using parameters (θ̂ ) as a reference during learn-
ing. Between the two approaches, the mean deterioration
is almost similar for both instance selection and weight
regularization; however, the latter has a comparatively
larger standard deviation, thus making the former a more
suitable approach. We further performed experiments to
combine the two approaches, but we did not obtain any
improvements.
When the spontaneous expressions of SEMAINE are

evaluated over the acted expressions of USC IEMOCAP,
the relative deterioration using sRSM with instance selec-
tion and weight regularization is 1.0% ± 0.5% and 1.1% ±
0.8%, respectively, compared to 4.2% ± 1.1% and 4.4% ±
1.9%, respectively, for the vice versa case. This can mainly
be attributed to the number of examples available for
training the classifier; USC IEMOCAP is approximately
five times larger than SEMAINE. Between arousal and
valence-based classification, we observe that the deteri-
oration is more severe for the latter case. Using sRSM
with weight regularization and instance selection, a rel-
ative deterioration of 1.8% ± 1.3% and 1.4% ± 1.1%,
respectively, is obtained for arousal. Whereas, a relative
deterioration of 3.5% ± 1.9% and 4.2% ± 2.3%, respec-
tively, is obtained for valence. Again, the inherent limi-
tations of speech coupled with the differing perceptions
of valence across cultures and geographical regions pos-
sibly account for this loss. This phenomenon was also
observed in a previous cross-corpus study conducted over
different databases [31]. There are no previous reports of
cross-corpus studies over the two databases used in this
study.
Between different LTMs, the supervised LTMs outper-

form their unsupervised counterparts as observed in a
within-corpus setting. sRSM, once again, achieves the
least deterioration across all train/test scenarios and adap-
tation approaches. In case of LDA and RSM, the topics
learnt initially over the training corpus remain unchanged

Figure 9 Cross-corpus recall without adaptation. Horizontal axis indicates the classification task and test corpus. The figure shows a detailed
comparison between four different LTMs along with the best within-corpus (WC) recall in each case.
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Figure 10 Cross-corpus recall with instance selection. Horizontal axis indicates the classification task and test corpus. The figure shows a
detailed comparison between four different LTMs along with the best within-corpus (WC) recall in each case. There is a significant improvement in
performance as opposed to a conventional approach without instance selection, i.e. Figure 9.

and only the top-level classifier is modified. Although
the results show a relatively higher deterioration com-
pared to sRSM or sLDA, they single out the performance
loss due to the topic-based features alone and are indeed
promising.

Conclusions
In this work, we proposed a novel approach for the extrac-
tion of turn-level features using latent topic models for
speech emotion recognition. This is the first work to
draw similarities between text documents and emotional
speech; we showed that the latter can be viewed as a
mixture of multiple emotion-specific topics, where the
topics capture salient information from the co-occurrence
patterns of frame-level features. We considered two fun-
damentally different models, LDA and RSM, and their
supervised counterparts for the purpose of generating
topic-based features. Specifically, sRSM, which treats the

RSM as a pre-training stage followed by fine-tuning via
backpropagation, was proposed to learn features that are
optimal for discriminative tasks.
The proposed features were evaluated on different types

of emotional expressions and output representations, out-
performing state-of-the-art methods in each case. On
the acted emotions of USC IEMOCAP, sRSM obtained
a relative improvement of 7% compared to turn-level
statistics collected via brute force. Whereas on the spon-
taneous expressions of SEMAINE, sRSM obtained an
improvement of 16.75% for valence-based classification,
which is quite significant considering the well-known dif-
ficulty of valence discrimination using only speech infor-
mation. With respect to the turn duration, we showed
that sRSM and in general, LTMs, are better suited for
longer turns (>6 s), which is highly desirable for current
turn-based practices. The improvement over turn-level
statistics for valence-based classification is particularly

Figure 11 Cross-corpus recall with weight regularization. Horizontal axis indicates the classification task and test corpus. The figure shows a
detailed comparison between four different LTMs along with the best within-corpus (WC) recall in each case. There is a significant improvement in
performance as opposed to a conventional approach with standard L2 regularization, i.e. Figure 9.
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significant - 26% and 35% on the development and test sets
of SEMAINE, respectively.
In a cross-corpus setting, we showed that classifiers

are inherently biased because of the annotation proce-
dures and cultural perceptions specific to each corpus,
which leads to poor generalization. To compensate for
this bias and improve cross-corpus performance, we pro-
posed two novel adaptation-based approaches. Compared
to the best within-corpus performance, sRSM showed the
least relative deterioration of only 2.6% and 2.7% using
instance selection and weight regularization, respectively.
This further highlights that the proposed features can effi-
ciently generalize across different accents, speakers, and
elicitation types (acted vs. spontaneous).
Qualitative aspects of the features were investigated

using a normalized point-wise mutual information mea-
sure between topics and emotions. Our analyses revealed
the emotions to be naturally and well separated in
the topic space. Topics ranked higher for one emotion
received a lower rank for other emotions, further demon-
strating that the co-occurrence information captured by
topics is strongly related to the underlying emotion,
thus offering a novel, generative-model-based interpre-
tation of how emotions influence the observed speech
characteristics.
Finally, we comment on the flexibility of the proposed

approach. Although energy, F0, and MFCCs were used
as frame-level features in this work, words and topics
can be derived from other frame-level features or modal-
ities and be combined to decrease the confusion between
happy-angry and neutral-sad emotions and lead to fur-
ther improvements. Similarly, a simple logistic/softmax
regression classifier can be replaced bymore sophisticated
classifiers [15] or alternative tree-based schemes [46] to
achieve even better discrimination.
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6. J Přibil, Přibilová A, Evaluation of influence of spectral and prosodic
features on GMM, classification of Czech and Slovak emotional speech.
EURASIP J. Audio Speech Music Process. 2013(1), 1–22 (2013)

7. TL Nwe, SW Foo, LC De Silva, Speech emotion recognition using hidden
Markov models. Speech Commun. 41(4), 603–623 (2003)

8. A Metallinou, S Lee, S Narayanan, in Proceedings of IEEE International
Conference on Acoustics, Speech and Signal Processing. Decision level
combination of multiple modalities for recognition and analysis of
emotional expression (IEEE, Dallas, 2010), pp. 2462–2465

9. El Ayadi MM, MS Kamel, F Karray, in Proceedings of IEEE International
Conference on Acoustics, Speech and Signal Processing, vol. 4. Speech
emotion recognition using Gaussian mixture vector autoregressive
models (IEEE, Honolulu, 2007), pp. 954–957

10. CE Williams, KN Stevens, Emotions and speech: Some acoustical
correlates. J. Acoust. Soc. Am. 52(4B), 1238–1250 (2005)

11. E Mower, MJ Mataric, S Narayanan, A framework for automatic human
emotion classification using emotion profiles. IEEE Trans. Audio Speech
Lang. Process. 19(5), 1057–1070 (2011)

12. B Schuller, A Batliner, S Steidl, D Seppi, Recognising realistic emotions and
affect in speech: State of the art and lessons learnt from the first
challenge. Speech Commun. 53(9), 1062–1087 (2011)

13. C Oflazoglu, S Yildirim, Recognizing emotion from Turkish speech using
acoustic features. EURASIP J. Audio Speech Music Process. 2013(1), 1–11
(2013)

14. O-W Kwon, K Chan, J Hao, T-W Lee, in Proceedings of INTERSPEECH.
Emotion recognition by speech signals (ISCA, Geneva, 2003), pp. 125–128

15. B Schuller, A Batliner, D Seppi, S Steidl, T Vogt, J Wagner, L Devillers, L
Vidrascu, N Amir, L Kessous, V Aharonson, in Proceedings of INTERSPEECH.
The relevance of feature type for the automatic classification of emotional
user states: low level descriptors and functionals (ISCA, Antwerp, 2007),
pp. 2253–2256

16. F Eyben, M Wollmer, B Schuller. International Conference on Affective
Computing and Intelligent Interaction and Workshops (IEEE, Amsterdam,
2009), pp. 1–6

17. B Schuller, S Steidl, A Batliner, in Proceedings of INTERSPEECH. The
INTERSPEECH, 2009 emotion challenge (ISCA, Brighton, 2009),
pp. 312–315

18. B Schuller, M Valstar, F Eyben, G McKeown, R Cowie, M Pantic, in
Proceedings of Affective Comput. Intell. Interaction, vol. 6975. Avec 2011–the
first international audio/visual emotion challenge (IEEE, Memphis, 2011),
pp. 415–424

19. SC Deerwester, ST Dumais, TK Landauer, GW Furnas, RA Harshman,
Indexing by latent semantic analysis. JASIS. 41(6), 391–407 (1990)

20. T Hofmann, in Proceedings of the ACM SIGIR Conference on Research and
Development in Information Retrieval. Probabilistic latent semantic
indexing (ACM, Berkeley, 1999), pp. 50–57

21. DM Blei, Ng, AY, MI Jordan, Latent Dirichlet allocation. J. Mach. Learn. Res.
3, 993–1022 (2003)

22. T Huynh, M Fritz, B Schiele, in Proceedings of the 10th International
Conference on Ubiquitous Computing. Discovery of activity patterns using
topic models (ACM, Seoul, 2008), pp. 10–19

23. N Srivastava, R Salakhutdinov, in Proceedings of Adv. Neural Inf. Process. Syst,
vol. 15. Multimodal learning with deep Boltzmann machines (NIPS, Lake
Tahoe, 2012), pp. 2231–2239

24. D Liu, T Chen, in IEEE International Conference on Computer Vision.
Unsupervised image categorization and object localization using topic
models and correspondences between images (IEEE, Rio de Janeiro,
2007), pp. 1–7

25. M Shah, L Miao, C Chakrabarti, A Spanias, in Proceedings of IEEE
International Conference on Acoustics, Speech and Signal Processing. A
speech emotion recognition framework based on latent Dirichlet
allocation: Algorithms and FPGA implementation (IEEE, Vancouver, 2013),
pp. 2553–2556

26. GE Hinton, R Salakhutdinov, in Proceedings of Adv. Neural Inf. Process. Syst,
vol. 1. Replicated softmax: an undirected topic model (NIPS, Lake Tahoe,
2009), pp. 1607–1614

27. A Stuhlsatz, J Lippel, T Zielke, Feature extraction with deep neural
networks by a generalized discriminant analysis. IEEE Trans. Neural Netw.
Learn. Syst. 23(4), 596–608 (2012)

28. A Stuhlsatz, C Meyer, F Eyben, T Zielke, G Meier, B Schuller, in Proceedings
of IEEE International Conference on Acoustics, Speech and Signal Processing.



Shah et al. EURASIP Journal on Audio, Speech, andMusic Processing  (2015) 2015:4 Page 17 of 17

Deep neural networks for acoustic emotion recognition: Raising the
benchmarks (IEEE, Prague, 2011), pp. 5688–5691

29. S Press, S Wilson, Choosing between logistic regression and discriminant
analysis. J. Am. Stat. Assoc. 73(364), 699–705 (1978)

30. M Pohar, M Blas, S Turk, Comparison of logistic regression and linear
discriminant analysis: a simulation study. Metodolski Zvezki. 1(1), 143–161
(2004)

31. B Schuller, B Vlasenko, F Eyben, M Wollmer, A Stuhlsatz, A Wendemuth, G
Rigoll, Cross-corpus acoustic emotion recognition: variances and
strategies. IEEE Trans. Affect. Comput. 1(2), 119–131 (2010)

32. D Neiberg, P Laukka, HA Elfenbein, in Proceedings of INTERSPEECH. Intra-,
inter-, and cross-cultural classification of vocal affect (ISCA, Florence,
2011), pp. 1581–1584

33. F Eyben, A Batliner, B Schuller, D Seppi, S Steidl, in Proceedings of the 3rd
International Workshop on EMOTION (satellite of LREC): Corpora for Research
on Emotion and Affect. Cross-corpus classification of realistic emotions
some pilot experiments (LREC, Valetta, 2010), pp. 77–82

34. B Schuller, Z Zhang, F Weninger, G Rigoll, in Proceedings of the 2011
Afeka-AVIOS Speech Processing Conference. Selecting training data for
cross-corpus speech emotion recognition: Prototypicality vs.
generalization (ACLP, Tel Aviv, Israel, 2011)

35. C Busso, M Bulut, C-C Lee, A Kazemzadeh, E Mower, S Kim, JN Chang, S
Lee, SS Narayanan, IEMOCAP: Interactive emotional dyadic motion
capture database. Lang. Resour. Eval. 42(4), 335–359 (2008)

36. G McKeown, M Valstar, R Cowie, M Pantic, M Schroder, The SEMAINE
database: annotated multimodal records of emotionally colored
conversations between a person and a limited agent. IEEE Trans. Affect.
Comput. 3(1), 5–17 (2012)

37. M El Ayadi, MS Kamel, F Karray, Survey on speech emotion recognition:
Features, classification schemes, and databases. Pattern Recognit. 44(3),
572–587 (2011)

38. C Wang, D Blei, F.-F Li, in IEEE Conference on Computer Vision and Pattern
Recognition. Simultaneous image classification and annotation (IEEE,
Miami, 2009), pp. 1903–1910

39. GE Dahl, D Yu, L Deng, A Acero, Context-dependent pre-trained deep
neural networks for large-vocabulary speech recognition. IEEE Trans.
Audio Speech Lang. Process. 20(1), 30–42 (2012)

40. MA Carreira-Perpinan, GE Hinton, in Proceedings of the 10th International
Workshop on Artificial Intelligence and Statistics. On contrastive divergence
learning (Society for Artificial Intelligence and Statistics NP Barbados,
2005), pp. 33–40

41. T Painter, A Spanias, Perceptual coding of digital audio. Proc. IEEE. 88(4),
451–515 (2000)

42. A Spanias, T Painter, V Atti, Audio Signal Processing and Coding. (John Wiley
& Sons, Hoboken, 2006)

43. MC Sezgin, B Gunsel, GK Kurt, Perceptual audio features for emotion
detection. EURASIP J. Audio Speech Music Process. 2012(1), 1–21 (2012)

44. S Young, G Evermann, D Kershaw, G Moore, J Odell, D Ollason, V Valtchev,
P Woodland, The HTK Book, vol.2. (Entropic Cambridge Research
Laboratory, Cambridge, 1997)

45. G Bouma, in Proceedings of GSCL. Normalized (pointwise) mutual
information in collocation extraction (GSCL, Potsdam, 2009), pp. 31–40

46. C C-Lee, E Mower, C Busso, S Lee, S Narayanan, Emotion recognition
using a hierarchical binary decision tree approach. Speech Commun.
53(9), 1162–1171 (2011)

47. B Schuller, M Valster, F Eyben, R Cowie, M Pantic, in Proceedings of the 14th
ACM International Conference onMultimodal Interaction. Avec 2012: the
continuous audio/visual emotion challenge (ACM, Santa Monica, 2012),
pp. 449–456

48. M Hall, E Frank, G Holmes, B Pfahringer, P Reutemann, IH Witten, The
WEKA data mining software: an update. ACM SIGKDD Explorations
Newsletter. 11(1), 10–18 (2009)

49. S Pan, J Tao, Y Li, in Proceedings of Affect. Comput. Intell. Interaction, vol.
6975. The CASIA audio emotion recognition method for audio/visual
emotion challenge 2011 (IEEE, Memphis, 2011), pp. 388–395

50. M Glodek, S Tschechne, G Layher, M Schels, T Brosch, S Scherer, M
Kächele, M Schmidt, H Neumann, G Palm, F Schwenker, in Proceedings of
Affect. Comput. Intell. Interaction, vol. 6975. Multiple classifier systems for
the classification of audio-visual emotional states (IEEE, Memphis, 2011),
pp. 359–368

51. L Devillers, C Vaudable, C Chastagnol, in Proceedings of INTERSPEECH.
Real-life emotion-related states detection in call centers: a cross-corpora
study (ISCA, Makuhari, 2010), pp. 2350–2353

Submit your manuscript to a 
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

    Submit your next manuscript at 7 springeropen.com


	Abstract
	Keywords

	Introduction
	Latent topic models
	Latent Dirichlet allocation
	Replicated softmax model
	Supervised RSM

	LTM-based features for emotion recognition
	Within-corpus emotion recognition
	Databases
	Baseline and metrics
	USC IEMOCAP
	SEMAINE
	Effect of turn duration

	Cross-corpus emotion recognition
	Instance selection
	Weight regularization
	Results and discussion

	Conclusions
	Competing interests
	Acknowledgements
	References

