
5528 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 29, NO. 11, NOVEMBER 2018

Optimizing Kernel Machines Using Deep Learning
Huan Song , Member, IEEE, Jayaraman J. Thiagarajan, Member, IEEE, Prasanna Sattigeri, Member, IEEE,

and Andreas Spanias, Fellow, IEEE

Abstract— Building highly nonlinear and nonparametric
models is central to several state-of-the-art machine learning
systems. Kernel methods form an important class of techniques
that induce a reproducing kernel Hilbert space (RKHS) for
inferring non-linear models through the construction of similarity
functions from data. These methods are particularly preferred
in cases where the training data sizes are limited and when
prior knowledge of the data similarities is available. Despite
their usefulness, they are limited by the computational complexity
and their inability to support end-to-end learning with a task-
specific objective. On the other hand, deep neural networks
have become the de facto solution for end-to-end inference in
several learning paradigms. In this paper, we explore the idea of
using deep architectures to perform kernel machine optimization,
for both computational efficiency and end-to-end inferencing.
To this end, we develop the deep kernel machine optimization
framework, that creates an ensemble of dense embeddings using
Nyström kernel approximations and utilizes deep learning to
generate task-specific representations through the fusion of the
embeddings. Intuitively, the filters of the network are trained
to fuse information from an ensemble of linear subspaces
in the RKHS. Furthermore, we introduce the kernel dropout
regularization to enable improved training convergence. Finally,
we extend this framework to the multiple kernel case, by coupling
a global fusion layer with pretrained deep kernel machines for
each of the constituent kernels. Using case studies with limited
training data, and lack of explicit feature sources, we demonstrate
the effectiveness of our framework over conventional model
inferencing techniques.

Index Terms— Deep neural networks (DNNs), kernel methods,
multiple kernel learning (MKL), Nyström approximation.

I. INTRODUCTION

THE recent surge in representation learning for com-
plex, high-dimensional data has revolutionized machine

learning and data analysis. The success of deep neural
networks (DNNs) in a wide variety of computer vision tasks
has emphasized the need for highly nonlinear and nonpara-
metric models [1], [2]. In particular, by coupling modern deep
architectures with large data sets [3], [4], efficient optimiza-
tion strategies [5], [6], and GPU utilization, one can obtain

Manuscript received June 24, 2017; revised November 14, 2017; accepted
January 30, 2018. Date of publication March 6, 2018; date of current version
October 16, 2018. This work was supported in part by the SenSIP Center at
Arizona State University and in part by the auspices of the U.S. Department
of Energy by Lawrence Livermore National Laboratory under Contract
DE-AC52-07NA27344. (Corresponding author: Huan Song.)

H. Song and A. Spanias are with the SenSIP Center, School of
Electrical, Computer and Energy Engineering, Arizona State University,
Tempe, AZ 85287 USA (e-mail: huan.song@asu.edu; spanias@asu.edu).

J. J. Thiagarajan is with the Lawrence Livermore National Laboratory,
Livermore, CA 94550 USA (e-mail: jjayaram@llnl.gov).

P. Sattigeri is with the IBM T. J. Watson Research Center, Yorktown Heights,
NY 10598 USA (e-mail: psattig@us.ibm.com).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TNNLS.2018.2804895

highly effective predictive models. By using a composition
of multiple non-linear transformations, along with novel loss
functions, DNNs can approximate a large class of functions
for prediction tasks. However, the increasing complexity of
the networks requires exhaustive tuning of several hyper-
parameters in the discrete space of network architectures, often
resulting in suboptimal solutions or model overfitting. This
is particularly more common in applications characterized
by limited data set sizes and complex dependencies in the
input space. Despite the advances in regularization techniques
and data augmentation strategies [7], in many scenarios, it is
challenging to obtain deep architectures that provide signif-
icant performance improvements over conventional machine
learning solutions. In such cases, a popular alternative solution
to building effective, nonlinear predictive models is to employ
kernel machines.

A. Kernel Methods and Multiple Kernel Learning

Kernel methods have a long-standing success in machine
learning, primarily due to their well-developed theory, convex
formulations, and their flexibility in incorporating prior knowl-
edge of the dependencies in the input space. Denoting the
d−dimensional input domain as X ⊂ R

d , the kernel function
k : X ×X �→ R induces an implicit mapping into a reproduc-
ing kernel Hilbert space (RKHS) Hk , through the construction
of a positive definite similarity matrix between samples in the
input space. An appealing feature of this approach is that even
simple linear models inferred in the RKHS are highly effective
compared to their linear counterparts learned directly in the
input space.

Kernel methods are versatile in that specifying a positive-
definite kernel will enable the use of this generic optimiza-
tion framework for any data representation, such as vectors,
matrices, sequences or graphs. Consequently, a broad range
of kernel construction strategies have been proposed in the
literature, e.g., χ2 kernel [8], string [9], and graph kernels [10].
Furthermore, the classical Representer Theorem allows the
representation of any optimal function in Hk thereby enabling
construction of a dual optimization problem based only on the
kernel matrix and not the samples explicitly. This is commonly
referred as the kernel trick in the machine learning literature.
Finally, kernel methods can be augmented with a variety
of strategies for controlling the learning capacity and hence
reducing model overfitting [11].

Despite these advantages, kernel methods have some crucial
limitations when applied in practice: (a) The first limitation
is their computational complexity, which grows quadratically
with the sample size due to the computation of the kernel
(Gram) matrix. A popular solution to address this challenge is

2162-237X © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: ASU Library. Downloaded on March 29,2020 at 00:15:22 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-9639-9962

SONG et al.: OPTIMIZING KERNEL MACHINES USING DEEP LEARNING 5529

to approximate the kernel matrix using the Nyström method
[12] or the random Fourier features based methods for shift-
invariant kernels [13]. While the Nyström method obtains
a low-rank approximation of the kernel matrix, the latter
explicitly maps the data into an Euclidean inner product
space using randomized feature maps; (b) Another crucial
limitation of kernel methods is that, unlike the state-of-the-
art deep learning systems, the data representation and model
learning stages are decoupled and hence cannot admit end-to-
end learning.

The active study in multiple kernel learning (MKL) alle-
viates this limitation to some extent. MKL algorithms [14]
attempt to automatically select and combine multiple base
kernels to exploit the complementary nature of the individ-
ual feature spaces and thus improve performance. A variety
of strategies can be used for combining the kernel matri-
ces, such that the resulting matrix is also positive definite,
i.e., a valid kernel. Common examples include nonnega-
tive sum [15] or hadamard product of the matrices [16].
Although MKL provides additional parameters to obtain an
optimal RKHS for effective inference, the optimization (dual)
is computationally more challenging, particularly with the
increase in the number of kernels. More importantly, in prac-
tice, this optimization does not produce consistent perfor-
mance improvements over a simple baseline kernel constructed
as the unweighted average of the base kernels [17], [18].
Furthermore, extending MKL techniques, designed primarily
for binary classification, to multiclass classification problems
is not straightforward. In contrast to the conventional one-
versus-rest approach, which decomposes the problem into
multiple binary classification problems, in MKL it is beneficial
to obtain the weighting of base kernels with respect to all
classes [19], [20].

B. Bridging Deep Learning and Kernel Methods

In this paper, our goal is to utilize deep architectures
to facilitate improved optimization of kernel machines,
particularly in scenarios with limited labeled data and prior
knowledge of the relationships in data (e.g., biological data
sets). Existing efforts on bridging deep learning with kernel
methods focus on using kernel compositions to emulate neural
network layer stacking or enabling the optimization of deep
architectures with data-specific kernels [21]. Combining the
advantages of these two paradigms of predictive learning has
led to new architectures and inference strategies. For example,
in [22] and [23], the authors utilized kernel learning to
define a new type of convolutional networks and demonstrated
improved performance in inverse imaging problems (details in
Section II-B).

Inspired by these efforts, in this paper, we develop a
deep learning based solution to kernel machine optimization,
for both single and multiple kernel cases. While existing
kernel approximation techniques make kernel learning
efficient, utilizing deep networks enables end-to-end inference
with a task-specific objective. In contrast to approaches such
as [22] and [23], which replace the conventional neural
network operations, e.g., convolutions, using equivalent

computations in the RKHS, we use the similarity kernel
to construct dense embeddings for data and build task-
specific representations, through fusion of these embeddings.
Consequently, our approach is applicable to any kind of
data representation. Similar to conventional kernel methods,
our approach exploits the native space of the chosen kernel
during inference, thereby controlling the capacity of learned
models, and thus leading to improved generalization. Finally,
in scenarios where multiple kernels are available during train-
ing, either corresponding to multiple feature sources or from
different kernel parameterizations, we develop a multiple
kernel variant of the proposed approach. Interestingly,
in scenarios with limited amounts of data and in applications
with no access to explicit feature sources, the proposed
approach is superior to state-of-the-practice kernel machine
optimization techniques and deep feature fusion techniques.

The main contributions of this paper can be summarized as
follows:

• We develop deep kernel machine optimization (DKMO),
which creates dense embeddings for the data through
projection onto a subspace in the RKHS and learns task-
specific representations using deep learning.

• To improve the effectiveness of the representations,
we propose to create an ensemble of embeddings obtained
from Nyström approximation methods, and pose the
representation learning task as deep feature fusion.

• We introduce the kernel dropout regularization to enable
robust feature learning with kernels from limited data.

• We develop M-DKMO, a multiple kernel variant of the
proposed algorithm, to effectively perform MKL with
multiple feature sources or kernel parameterizations.

• We show that on standardized data sets, where
kernel methods have had proven success, the proposed
approach outperforms the state-of-the-practice kernel
methods, with a significantly simpler optimization.

• Using cell biology data sets, we demonstrate the
effectiveness of our approach in cases where we
do not have access to features but only encoded
relationships.

• Under the constraint of limited training data, we show
that our approach outperforms both the state-of-the-art
MKL methods and standard DNNs applied to the feature
sources directly.

II. RELATED WORKS

In this section, we briefly review the prior art in optimizing
kernel machines and discuss the recent efforts toward bridging
kernel methods and deep learning.

A. Kernel Machine Optimization

The success of kernel support vector machines (SVMs) [24]
motivated the kernelization of a broad range of linear machine
learning formulations in the Euclidean space. Popular exam-
ples are regression [25], clustering [26], unsupervised and
supervised dimension reduction algorithms [27], dictionary
learning for sparse representations [28], [29] and many others.
Following the advent of more advanced data representations

Authorized licensed use limited to: ASU Library. Downloaded on March 29,2020 at 00:15:22 UTC from IEEE Xplore. Restrictions apply.

5530 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 29, NO. 11, NOVEMBER 2018

in machine learning algorithms, such as graphs and points
on embedded manifolds, kernel methods provided a flexible
framework to perform statistical learning with such data.
Examples include the large class of graph kernels [10] and
Grassmannian kernels for Riemannian manifolds of linear
subspaces [30].

Despite the flexibility of this approach, the need to deal
with kernel matrices makes the optimization infeasible in large
scale data. There are two classes of approaches commonly
used by researchers to alleviate this challenge. First, kernel
approximation strategies can be used to reduce both com-
putational and memory complexity of kernel methods, e.g.,
the Nyström method [12]. The crucial component in Nyström
kernel approximation strategies is to select a subset of the
kernel matrix to recover the inherent relationships in the data.
A straightforward uniform sampling on columns of kernel
matrix has been demonstrated to provide reasonable perfor-
mance in many cases [31]. However, Zhang and Kwok [32]
proposed an improved variant of Nyström approximation, that
employs distance-based clustering to obtain landmark points
in order to construct a subspace in the RKHS. Interestingly,
the authors proved that the approximation error is bounded
by the quantization error of coding each sample using its
closest landmark. Kumar et al. [33] generated an ensemble
of approximations by repeating Nyström random sampling
multiple times for improving the quality of the approximation.

Second, in the case of shift-invariant kernels, random
Fourier features can be used to design scalable kernel
machines [34], [35]. Instead of using the implicit feature
mapping in the kernel trick, Rahimi and Recht [34] proposed
to utilize randomized features for approximating kernel eval-
uation. The idea is to explicitly map the data to an Euclidean
inner product space using randomized feature maps, such that
kernels can be approximated using Euclidean inner products.
Using random Fourier features, Huang et al. [36] showed that
shallow kernel machines matched the performance of deep
networks in speech recognition, while being computationally
efficient.

1) Combining Multiple Kernels: A straightforward exten-
sion to kernel learning is to consider multiple kernels. Here,
the objective is to learn a combination of base kernels
k1, . . . , kM and perform empirical risk minimization simul-
taneously. Conical [15] and convex combinations [37] are
commonly considered and efficient optimizers such as sequen-
tial minimal optimization [15] and spectral projected gra-
dient [38] techniques have been developed. In an exten-
sive review of MKL algorithms, Gönen and Alpayd?n [14]
showed that the formulation in [18] achieved consistently
superior performance on several binary classification tasks.
MKL algorithms have been applied to a wide range of
machine learning problems. With base kernels constructed
from distinct features, MKL can be utilized as a feature fusion
mechanism [17], [39]–[42]. When base kernels originate from
different feature sources or kernel parameterizations, MKL
automates the kernel selection and parameter tuning process
[15], [20]. Most recent research in MKL focus on improving
the multi-class classification performance [20] and effectively
handling training convergence and complexity [43].

These simple fusion schemes have been generalized further
to create localized MKL (LMKL) [44]–[46] and nonlinear
MKL algorithms. Moeller et al. [46] have formulated a unified
view of LMKL algorithms

kβ(xi , x j) =
∑

m

βm(xi , x j)km(xi , x j) (1)

where βm is the gating function for kernel function km .
In contrast to “global” MKL formulations where the weight βm

is constant across data, the gating function in (1) takes the data
sample as an independent variable and is able to characterize
the underlying local structure in data. Several LMKL algo-
rithms differ in how βm is constructed. For example, in [44],
βm is chosen to be separable into softmax functions. On the
other hand, nonlinear MKL algorithms are based on the idea
that non-linear combination of base kernels could provide
richer and more expressive representations compared to linear
mixing. For example, [18] considered polynomial combination
of base kernels and [47] utilized a two-layer neural network
to construct an radial basis function (RBF) kernel composition
on top of the linear combination.

B. Combining Deep Learning With Kernel Methods

While the recent focus of research in kernel learning has
been toward scaling kernel optimization and MKL, there is
another important direction aimed at improving the represen-
tation power of kernel machines. In particular, inspired by the
exceptional power of deep architectures in feature design and
end-to-end learning, a recent wave of research efforts attempt
to incorporate ideas from deep learning into kernel machine
optimization [23], [47]–[50]. One of the earliest approaches
in this direction was developed by Cho et al. [48], in which a
new arc-cosine kernel was defined. Based on the observation
that arc-cosine kernels possess characteristics similar to an
infinite single-layer threshold network, the authors proposed
to emulate the behavior of DNN by composition of arc-cosine
kernels. The kernel composition idea using neural networks
was then extended to MKL by Zhuang et al. [47]. The
connection between kernel learning and deep learning can
also be drawn through Gaussian processes as demonstrated
by Wilson et al. [50], where theyderived deep kernels through
the Gaussian process marginal likelihood. Another class of
approaches directly incorporated kernel machines into DNN
architectures. For example, Wiering et al. [49] constructed a
multilayer SVM by replacing neurons in multilayer percep-
trons) with SVM units. More recently, in [23], kernel approx-
imation is carried out using supervised subspace learning
in the RKHS, and backpropagation-based training similar to
convolutional neural network (CNN) is adopted to optimize the
parameters. The experimental results on image reconstruction
and superresolution showed that the new type of network
achieved competitive and sometimes improved performance
as compared to CNN.

In this paper, we provide an alternative viewpoint to kernel
machine optimization by considering the kernel approximate
mappings as embeddings of the data and employ DNNs to
infer task-specific representations as a fusion of an ensemble
of subspace projections in the RKHS. Crucial advantages of

Authorized licensed use limited to: ASU Library. Downloaded on March 29,2020 at 00:15:22 UTC from IEEE Xplore. Restrictions apply.

SONG et al.: OPTIMIZING KERNEL MACHINES USING DEEP LEARNING 5531

Fig. 1. DKMO—the proposed approach for optimizing kernel machines
using DNNs. For a given kernel, we generate multiple dense embeddings
using kernel approximation techniques, and fuse them in a fully connected
DNN. The architecture utilizes fully connected networks with kernel dropout
regularization during the fusion stage. Our approach can handle scenarios
when both the feature sources and the kernel matrix are available during
training or when only the kernel similarities can be accessed.

our approach are that extension to the multiple kernel case
is straightforward, and it can be highly robust to smaller data
sets.

III. DEEP KERNEL MACHINE OPTIMIZATION—SINGLE

KERNEL CASE

In this section, we describe the proposed DKMO framework
which utilizes the power of deep architectures in end-to-
end learning and feature fusion to facilitate kernel learning.
Viewed from bottom to top in Fig. 1, the DKMO first extracts
multiple dense embeddings from a precomputed similarity
kernel matrix K and optionally the feature source X if
accessible during training. On top of each embedding, we build
a fully connected neural network for representation learning.
Given the inferred latent spaces from representation learning,
we stack a fusion layer which is responsible for combining
the latent features and obtaining a concise representation for
inference tasks. Finally, we use a softmax layer at the top
to perform classification, or an appropriate dense layer for
regression tasks. Note that, similar to random Fourier feature
based techniques in kernel methods, we learn a mapping to
the Euclidean space, based on the kernel similarity matrix.
However, in contrast, the representation learning phase is not
decoupled from the actual task, and hence can lead to higher
fidelity predictive models.

A. Dense Embedding Layer

From Fig. 1, it can be seen that the components of repre-
sentation learning and fusion of hidden features are generic,
i.e., they are separate from the input data or the kernel. Conse-
quently, the dense embedding layer is the key component that
bridges kernel representations with the DNN training, thereby
enabling an end-to-end training.

1) Motivation: Consider the kernel Gram matrix K ∈ R
n×n ,

where Ki, j = k(xi , x j). The j -th column encodes the rele-
vance between sample x j to all other samples xi in the training
set, and hence this can be viewed as an embedding for x j . As a
result, these naive embeddings can potentially be used in the
input layer of the network. However, k j has large values at
location corresponding to training samples belonging to the
same class as x j and small values close to zero at others. The
sparsity and high dimensionality of these embeddings make
them unsuitable for inference tasks.

A natural approach to alleviate this challenge is to adopt ker-
nel matrix factorization strategies, which transform the original
embedding into a more tractable, low-dimensional representa-
tion. This procedure can be viewed as kernel approximation
with truncated SVD or Nyström methods [12]. Furthermore,
this is conceptually similar to the process of obtaining dense
word embeddings in natural language processing. For example,
Levy and Goldberg [51] have shown that the popular skip-
gram with negative sampling (SGNS) model in language mod-
eling is implicitly factorizing the pointwise mutual information
matrix, whose entries measure the association between pairs
of words. Interestingly, they demonstrated that alternate word
embeddings obtained using the truncated SVD method are
more effective than SGNS on some word modeling tasks [51].

In existing deep kernel learning approaches such as the
convolutional kernel networks [23], the key idea is to con-
struct multiple RKHSs at different convolutional layers of the
network, with a sequence of pooling operations between the
layers to facilitate kernel design for different subregion sizes.
However, this approach cannot generalize to scenarios where
the kernels are not constructed from images, for example,
in the case of biological sequences. Consequently, we propose
to obtain multiple approximate mappings (dense embeddings)
from the feature set or the kernel matrix using Nyström meth-
ods, and then utilize the DNN as both representation learning
and feature fusion mechanisms to obtain a task-specific rep-
resentation for data in the Euclidean space. All components
in this framework are general and are not constrained by the
application or kind of data used for training.

2) Dense Embeddings Using Nyström Approximation: In
order to be flexible with different problem settings, we con-
sider two different pipelines for constructing the dense embed-
dings based on Nyström approximation: I) In many appli-
cations, e.g., biological sequences or social networks, it is
often easier to quantify sample-to-sample distance or similarity
than deriving effective features or measurements for infer-
ence tasks. Furthermore, for many existing data sets, large-
scale pairwise distances are already precomputed and can
be easily converted into kernel matrices. In such scenarios,
we use the conventional Nyström method to calculate the
dense embeddings. II) When the input data is constructed from
predefined feature sources, we employ the clustered Nyström
method [32], which identifies a subspace in the RKHS using
distance-based clustering, and explicitly project the feature
mappings onto subspaces in the RKHS. In this case, the dense
embeddings are obtained without constructing the complete
kernel matrix for the data set. Next, we discuss these two
strategies in detail.

Authorized licensed use limited to: ASU Library. Downloaded on March 29,2020 at 00:15:22 UTC from IEEE Xplore. Restrictions apply.

5532 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 29, NO. 11, NOVEMBER 2018

a) Conventional Nyström approximation on kernels:
In applications where the feature sources are not directly
accessible, we construct dense embeddings from the kernel
matrix directly. Based on the Nyström method [31], [33],
a subset of s columns selected from K can be used to find
an approximate kernel map L ∈ R

n×r , such that K � LLT

where s � n and r ≤ s. To better facilitate the subsequent
DNN representation learning, we extract multiple approximate
mappings through different random samplings of the kernel
matrix. More specifically, from K, we randomly select s × P
columns without replacement, and then divide it into P sets
containing s columns each. Consider a single set E ∈ R

n×s

containing the selected columns and denote W ∈ R
s×s as the

intersection of the selected columns and corresponding rows
on K. The rank-r approximation K̃r of K is computed as

K̃r = EW̃r ET (2)

where W̃r is the optimal rank-r approximation of W obtained
using truncated SVD. As it can be observed, the time complex-
ity of the approximation reduces to O(s3), which corresponds
to performing SVD on W. This can be further reduced by ran-
domized SVD algorithms as shown in [52]. The approximate
mapping function L can then be obtained by

L = E
(
UW̃r

�
−1/2
W̃r

)
(3)

where UW̃r
and �W̃r

are top r eigenvalues and eigenvectors
of W.

With different sampling sets spanning distinct subspaces,
the projections will result in completely different representa-
tions in the RKHS. Since the performance of our end-to-end
learning approach is heavily influenced by the construction of
subspaces in the RKHS, we propose to infer an ensemble of
multiple subspace approximations for a given kernel. This is
conceptually similar to [33], in which an ensemble of multiple
Nyström approximations are inferred to construct an approx-
imation of the kernel. However, our approach works directly
with the approximate mappings L instead of approximated
kernels K̃r and the mappings are further coupled with the DNN
optimization. The differences in the representations of the
projected features will be exploited in the deep learning fusion
architecture to model the characteristics in different regions of
the input space. To this end, we repeat the calculation based
on (3) for all P selected sets and obtain the dense embeddings
L1, . . . , LP .

b) Clustered nyström approximation on feature sets:
When the feature sources are accessible, we propose to employ
clustered Nyström approximation to obtain the dense embed-
dings directly from features without construction of the actual
kernel. Following the approach in [32], k-means cluster cen-
troids can be utilized as the set of the landmark points from X.
Denoting the matrix of landmark points by Z = [z1, . . . , zr]
and the subspace they span by F = span(ϕ(z1), . . . , ϕ(zr)),
the projection of the samples ϕ(x1), . . . , ϕ(xn) in Hk onto its
subspace F is equivalent to the following Nyström approxi-
mation (we refer to [23] for the detailed derivation):

LZ = EZW−1/2
Z (4)

where (EZ)i, j = k(xi , z j) and (WZ)i, j = k(zi , z j). As it can
be observed in the above expression, only kernel matrices
WZ ∈ R

r×r and EZ ∈ R
n×r need to be constructed,

which are computationally efficient since r � n. Note that,
comparing (3) and (4), LZ is directly related to L by a linear
transformation when r = s, since

W−1/2
Z = UZ�

−1/2
Z UT

Z (5)

where UZ and �Z are eigenvectors and the associated eigen-
values of WZ, respectively.

Similar to the previous case, we obtain an ensemble of
subspace approximations by repeating the landmark selection
process with different clustering techniques: the k-means,
k-medians, k-medoids, agglomerative clustering [53], and
spectral clustering based on k nearest neighbors [54]. Note
that, additional clustering algorithms or a single clustering
algorithm with different parameterizations can be utilized as
well. For algorithms which only perform partitioning and
do not provide cluster centroids (e.g., spectral clustering),
we calculate the centroid of a cluster as the mean of the
features in that cluster. In summary, based on the P different
landmark matrices Z1, . . . , ZP , we obtain P different embed-
dings L1, . . . , LP for the feature set using (4).

B. Representation Learning

Given the kernel-specific dense embeddings, we perform
representation learning for each embedding using a multi-
layer fully connected network to facilitate the design of a
task-specific latent space. Note that, though strategies for
sharing weights across the different dense embeddings can
be employed, in our implementation we make the networks
independent. Following the common practice in deep learning
systems, at each hidden layer, dropout regularization [6] is
used to prevent overfitting and batch normalization [5] is
adopted to accelerate training.

C. Fusion Layer With Kernel Dropout

The fusion layer receives the latent representations for each
of the RKHS subspace mappings and can admit a variety
of fusion strategies to obtain the final representation for
prediction tasks. Common merging strategies include concate-
nation, summation, averaging, multiplication etc. The back
propagation algorithm can then be used to optimize for both
the parameters of the representation learning and those of
the fusion layer jointly to improve the classification accuracy.
Given the large number of parameters and the richness of
different kernel representations, the training process can lead
to overfitting. In order to alleviate this, we propose to impose
a kernel dropout regularization in addition to the activation
dropout in the representation learning phase.

In the typical dropout regularization [6] for training large
neural networks, neurons are randomly chosen to be removed
from the network along with their incoming and outgoing
connections. The process can be viewed as sampling from a
large set of possible network architectures with shared weights.
In our context, given the ensemble of dense embeddings
L1, . . . , LP , an effective regularization mechanism is needed

Authorized licensed use limited to: ASU Library. Downloaded on March 29,2020 at 00:15:22 UTC from IEEE Xplore. Restrictions apply.

SONG et al.: OPTIMIZING KERNEL MACHINES USING DEEP LEARNING 5533

Fig. 2. Effects of kernel dropout on the DKMO training process. We compare
the convergence characteristics obtained with the inclusion of the kernel
dropout regularization in the fusion layer in comparison to the nonregularized
version. Note that we show the results obtained with two different merging
strategies—concatenation and summation. We observe that the kernel dropout
regularization leads to improved convergence and lower classification error
for both the merging styles.

to prevent the network training from overfitting to certain
subspaces in the RKHS. More specifically, we propose to
regularize the fusion layer by dropping the entire representa-
tions learned from some randomly chosen dense embeddings.
Denoting the hidden layer representations before the fusion as
H = {hp}P

p=1 and a vector t associated with P independent
Bernoulli trials, the representation hp is dropped from the
fusion layer if tp is 0. The feed-forward operation can be
expressed as

tp ∼ Bernoulli(P)

H̃ = {h | h ∈ H and tp > 0}
h̃ = (hi), hi ∈ H̃
ỹi = f (wi h̃ + bi)

where wi are the weights for hidden unit i , (·) denotes
vector concatenation and f is the softmax activation function.
In Fig. 2, we illustrate the effects of kernel dropout on the con-
vergence speed and classification performance of the network.
The results shown are obtained using one of the kernels used
in protein subcellular localization (details in Section V-B).
We observe that, for both the merging strategies (concatena-
tion and summation), using the proposed regularization leads
to improved convergence and produces lower classification
error, thereby evidencing improved generalization of kernel
machines trained using the proposed approach.

IV. M-DKMO: EXTENSION TO MULTIPLE

KERNEL LEARNING

As described in Section II-A, extending kernel learning
techniques to the case of multiple kernels is crucial to enabling
automated kernel selection and fusion of multiple feature
sources. The latter is particularly common in complex recog-
nition tasks where the different feature sources characterize
distinct aspects of data and contain complementary informa-
tion. Unlike the traditional kernel construction procedures,

Fig. 3. M-DKMO—extending the proposed deep kernel optimization
approach to the case of multiple kernels. Each of the kernels are first
independently trained with the DKMO algorithm in Section III and then
combined using a global fusion layer. The parameters of the global fusion
layer and the individual DKMO networks are fine tuned in an end-to-end
learning fashion.

the problem of multiple kernel learning is optimized with a
task-specific objective, for example hinge loss in classification.
In this section, we describe the multiple kernel variant of the
DKMO (M-DKMO) presented in the previous section.

In order to optimize kernel machines with multiple
kernels {K}M

m=1 (optionally feature sets {X}M
m=1), we begin

by employing the DKMO approach to each of the kernels
independently. As we will demonstrate with the experimental
results, the representations for the individual kernels obtained
using the proposed approach produce superior class separation
compared to conventional kernel machine optimization (e.g.,
kernel SVM). Consequently, the hidden representations from
the learned networks can be used to subsequently obtain
more effective features by exploiting the correlations across
multiple kernels. Fig. 3 illustrates the M-DKMO algorithm for
multiple kernel learning. As shown in Fig. 3, an end-to-end
learning network is constructed based on a set of pretrained
DKMO models corresponding to the different kernels and a
global fusion layer that combines the hidden features from
those networks. Similar to the DKMO architecture in Fig. 1,
the global fusion layer can admit any merging strategy and can
optionally include additional fully connected layers before the
softmax layer.

Note that, after pretraining the DKMO network for each of
the kernels with a softmax layer, we ignore the final softmax
layer and use the optimized network parameters to initialize
the M-DKMO network in Fig. 3. Furthermore, we adopt the
kernel dropout strategy described in Section III-C in the global
fusion layer before applying the merge strategy. This regu-
larization process guards against overfitting of the predictive
model to any specific kernel and provides much improved
generalization. From our empirical studies, we observed that
both our initialization and regularization strategies enable
consistently fast convergence.

V. EXPERIMENTAL RESULTS

In this section, we demonstrate the features and performance
of the proposed framework using threefold experiments on
real-world data sets:

Authorized licensed use limited to: ASU Library. Downloaded on March 29,2020 at 00:15:22 UTC from IEEE Xplore. Restrictions apply.

5534 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 29, NO. 11, NOVEMBER 2018

Fig. 4. Example samples from the data sets used in our experiments. The
feature sources and kernels are designed based on state-of-the-art practices.
The varied nature of the data representations are readily handled by the
proposed approach and kernel machines are trained for single and multiple
kernel cases. (a) Images from different classes in the flowers102 data set.
(b) Sequences belonging to three different classes in the nonplant data set for
protein subcellular localization. (c) Accelerometer measurements characteriz-
ing different activities from the USC-HAD data set.

1) In Section V-A, we compare with single kernel opti-
mization (kernel SVM) and MKL to demonstrate that
the proposed methods are advantageous to the existing
algorithms based on kernel methods. To this end, we uti-
lize the standard flowers image classification data sets
with precomputed features. A sample set of images from
this data set are shown in Fig. 4(a).

2) In Section V-B, we emphasize the effectiveness of
proposed architectures when only pairwise similarities
are available from raw data. In subcellular localization,
a typical problem in bioinformatics, the data is in the
form of protein sequences [as shown in Fig. 4(b)]
and as a result, DNN cannot be directly applied for
representation learning. In this experiment, we compare
with decomposition-based feature extraction (Decomp)
and existing MKL techniques.

3) In Section V-C, we focus on the performance of
the proposed architecture when limited training data
is available. As a representative application, sensor-
based activity recognition requires often laborious data
acquisition from human subjects. The difficulty in
obtaining large amounts of clean and labeled data
can be further complicated by sensor failure, human

error and incomplete coverage of the demographic
diversity [55]–[57]. Therefore, it is significant to have
a model which has strong extrapolation ability given
even very limited training data. When features are acces-
sible, an alternative general-purpose algorithm is fully
connected neural networks (FCNs) coupled with feature
fusion. In this section, we compare the performance of
our approach with both FCN and state-of-the-art kernel
learning algorithms. A demonstrative set of time-varying
measurements are presented in Fig. 4(c).

As can be seen, the underlying data representations consid-
ered in our experiments are vastly different, i.e., images, bio-
logical sequences, and time series, respectively. The flexibility
of the proposed approach enables its use in all these cases
without additional preprocessing or architecture fine tuning.
Besides, depending on the application we might have access to
the different feature sources or to only the kernel similarities.
As described in Section III-A, the proposed DKMO algorithm
can handle both these scenarios by constructing the dense
embeddings suitably.

We summarize all methods used in our comparative studies
and the details of the parameters used in our experiments
below:

Kernel SVM: A single kernel SVM is applied on each
of the kernels. Following [58], the optimal C parameters
for kernel SVM were obtained based on a grid search on
[10−1, 100, 101, 102] × C∗ through cross validation on the
training set, where the default value C∗ was calculated as
C∗ = 1/((1/n)

∑
i Ki,i − (1/n2)

∑
i j Ki, j), which is the

inverse of the empirical variance of data in the input space.
Uniform: Simple averaging of base kernels has been shown

to be a strong baseline in comparison to MKL [17], [18].
We then apply kernel SVM on the averaged kernel.

UFO-MKL: We compare with this state-of-the-art MKL
algorithm [59]. The optimal C parameters were cross-validated
on the grid [10−1, 100, 101, 102, 103].

Decomp: When only kernel similarities are directly accessi-
ble (Section V-B), we compute decomposition-based features
using truncated SVD. A linear SVM is then learned on the
features with similar parameter selection procedure as in
kernel SVM.

Concat: In order to extend Decomp to the multiple kernel
case, we concatenate all Decomp features before learning a
classifier.

FCN: We construct a fully connected network for each
feature set (using Decomp feature if only kernels are available)
consisting of four hidden layers with sizes 256 − 512 − 256 −
128, respectively. For the multiple kernel case, a concatenation
layer merges all FCN built on each set. In the training process,
batch normalization and dropout with fixed rate of 0.5 are
used after every hidden layer. The optimization was carried
out using the Adam optimizer, with the learning rate set
at 0.001.

DKMO: and M-DKMO: For all the data sets, we first applied
the DKMO approach to each of the kernels (as in Fig. 1) with
the same network size as in FCN: Based on the discussion in
Section III-A, for data sets that allow access to explicit feature
sources, we extracted five dense embeddings corresponding to

Authorized licensed use limited to: ASU Library. Downloaded on March 29,2020 at 00:15:22 UTC from IEEE Xplore. Restrictions apply.

SONG et al.: OPTIMIZING KERNEL MACHINES USING DEEP LEARNING 5535

Fig. 5. Single kernel performance on flowers data sets. (a) Flowers17. (b) Flowers102–20. (c) Flowers102–30.

the five landmark point sets obtained using different clustering
algorithms. On the other hand, for data sets with only kernel
similarity matrices between the samples, we constructed six
different dense embeddings with varying subset sizes and
approximation ranks. We performed kernel dropout regular-
ization with summation merging for the fusion layer in the
DKMO architecture. The kernel dropout rate was fixed at
0.5. For multiple kernel fusion using the M-DKMO approach,
we normalize each kernel as K̄i, j = Ki, j /(Ki,i K j, j)

1/2,
so that K̄i,i = 1. Similar to the DKMO case, we set the
kernel dropout rate at 0.5 and used summation based merging
at the global fusion layer in M-DKMO. Other network learning
parameters were the same as the ones in the FCN method.
All network architectures were implemented using the Keras
library [60] with the TensorFlow backend and trained on a
single GTX 1070 GPU.

A. Image Classification—Comparisons With Kernel
Optimization and Multiple Kernel Learning

In this section, we consider the performance of the pro-
posed approach in image classification tasks, using data sets
which have had proven success with kernel methods. More
specifically, we compare DKMO with kernel SVM, and M-
DKMO with Uniform, and UFO-MKL, respectively, to demon-
strate that one can achieve better performance by replacing
the conventional kernel learning strategies with the proposed
deep optimization. We adopt flowers17 and flowers102,1 two
standard benchmarking data sets for image classification with
kernel methods. Both data sets are comprised of flower images
belonging to 17 and 102 categories, respectively. The precom-
puted χ2 distance matrices were calculated based on bag of
visual words of features such as HOG, HSV, and SIFT. The
variety of attributes enables the evaluation of different fusion
algorithms: a large class of features that characterize colors,
shapes, and textures can be exploited while discriminating
between different image categories [40], [61]–[63].

We construct χ2 kernels from these distance matrices as
k(xi , x j) = e−γ l(xi ,x j), where l denotes the distance between
xi and x j . Following [43], the γ value is empirically esti-
mated as the inverse of the average pairwise distances. To be
consistent with the setting from [64] on the flowers102 data

1www.robots.ox.ac.uk/ vgg/data/flowers

TABLE I

MULTIPLE KERNEL FUSION PERFORMANCE ON FLOWERS DATA SETS

set, we consider training on both 20 samples per class and
30 samples per class, respectively. The experimental results
for single kernels are shown in Fig. 5 and results for multiple
kernel fusion are shown in Table I, where we measure the
classification accuracy as the averaged fraction of correctly
predicted labels among all classes. As can be seen, DKMO
achieves competitive or better accuracy on all single kernel
cases and M-DKMO consistently outperforms UFO-MKL.
In many cases the improvements are significant, for example,
kernel 6 in the flowers17 data set, kernel 1 in the flow-
ers102 data set and the multiple kernel fusion result for the
flowers17 data set.

B. Protein Subcellular Localization—Lack of Explicit
Feature Sources

In this section, we consider the case where features are
not directly available from data. This is a common scenario
for many problems in bioinformatics, where conventional ker-
nel methods have been successfully applied [65]–[67]. More
specifically, we focus on predicting the protein subcellular
localization from protein sequences. We use 4 data sets
from [65]2: plant, nonplant, psort+, and psort− belonging
to 3 − 5 classes. Among the 69 sequence motif kernels,
we subselect six, which encompass all five patterns for each
substring format (except for psort−, where one invalid kernel
is removed). Following standard practice, a 50–50 random split
is performed to obtain the train and test sets. Since explicit
feature sources are not available, the dense embeddings are
obtained using the conventional Nyström sampling method.

The experimental results are shown in Fig. 6 and Table II.
The first observation is that for Decomp, although the optimal

2www.raetschlab.org/suppl/protsubloc

Authorized licensed use limited to: ASU Library. Downloaded on March 29,2020 at 00:15:22 UTC from IEEE Xplore. Restrictions apply.

5536 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 29, NO. 11, NOVEMBER 2018

Fig. 6. Single kernel performance on protein subcellular data sets. (a) Plant. (b) Nonplant. (c) Psort+. (d) Psort−.

TABLE II

MULTIPLE KERNEL FUSION PERFORMANCE ON PROTEIN
SUBCELLULAR DATA SETS

decomposition is used to obtain the features, the results are
still inferior and inconsistent. This demonstrates that under
such circumstances when features are not accessible, it is
necessary to work directly from kernels and build the model.
Second, we observe that on all data sets, DKMO consistently
produces improved or at least similar classification accuracies
in comparison to the baseline kernel SVM. For the few
cases where DKMO is inferior, for example, kernel 2 in
nonplant, the quality of the Nyström approximation seemed
to be the reason. By adopting more sophisticated approxima-
tions, or increasing the size of the ensemble, one can possibly
make DKMO more effective in such scenarios. Furthermore,
in the MKL case, the proposed M-DKMO approach produces
improved performance consistently.

Finally, in order to understand the behavior of the repre-
sentations generated by different approaches, we employ the
t-SNE algorithm [68] and obtain 2-D visualizations of the
considered baselines and the proposed approaches (Fig. 7). For
demonstration, we consider the representation from Decomp
of kernel 5 and Decomp of the kernel from Uniform in
the nonplant data set. In both DKMO, and M-DKMO, we
performed t-SNE on the representation obtained from the
fusion layers. The comparisons in Fig. 7 show that the
proposed single kernel learning and kernel fusion methods
produce highly discriminative representations than the corre-
sponding conventional approaches.

C. Sensor-Based Activity Recognition—Limited Data Case

In this section, we focus on evaluating the performance
of the proposed architectures where training data are limited.
A typical example under this scenario is sensor-based activity
recognition, where the sensor time-series data have to be

Fig. 7. 2-D T-SNE visualizations of the representations obtained for the
nonplant data set using the base kernel (Kernel 5), uniform multiple kernel
fusion, and the learned representations from DKMO and M-DKMO. The
samples are colored by their corresponding class associations. (a) Decomp.
(b) Proposed DKMO. (c) Uniform. (c) Proposed M-DKMO.

obtained from human subjects through long-term physical
activities. For evaluation, we compare (M)-DKMO with both
FCN and kernel learning algorithms.

Recent advances in activity recognition have demon-
strated promising results in fitness monitoring and assisted
living [56], [69]. However, when applied to smartphone
sensors and wearables, existing algorithms still have limita-
tions dealing with the measurement inaccuracies and noise.
Song et al. [57] proposed to address this challenge by per-
forming sensor fusion, wherein each sensor is characterized
by multiple feature sources, which naturally enables MKL
schemes.

We evaluate the performance of our framework using the
USC-HAD data set,3 which contains 12 different daily activ-
ities performed by each of the subjects. The measurements

3sipi.usc.edu/HAD

Authorized licensed use limited to: ASU Library. Downloaded on March 29,2020 at 00:15:22 UTC from IEEE Xplore. Restrictions apply.

SONG et al.: OPTIMIZING KERNEL MACHINES USING DEEP LEARNING 5537

Fig. 8. Visualization of the proposed framework applied on USD-HAD data set. We show the raw three-axis accelerometer signal and extracted three distinct
types of features: the time-series statistics, topological structure where we extract TDE descriptors and the correlation kernel. Furthermore, we show the t-SNE
visualization of the representations learned by DKMO and M-DKMO, where all points are classes coded according to the colorbar.

are obtained using a 3-axis accelerometer at a sampling rate
of 100 Hz. Following the standard experiment methodology,
we extract nonoverlapping frames of 5 s each, creating a total
of 5353 frames. We perform an 80–20 random split on the
data to generate the train and test sets. In order to characterize
distinct aspects of the time-series signals, we consider three
sets of features:

1) Statistics feature including mean, median, standard
deviation, kurtosis, skewness, total acceleration, mean-
crossing rate, and dominant frequency. These features
encode the statistical characteristics of the signals in
both time and frequency domains.

2) Shape feature derived from time-delay embeddings
(TDEs) to model the underlying dynamical sys-
tem [70]. The TDEs of a time-series signal x can
be defined as a matrix S whose i th row is si =
[xi , xi+τ , . . . , xt+(d �−1)τ], where d � is number of sam-
ples and τ is the delay parameter. The time-delayed
observation samples can be considered as points in R

d �
,

which is referred as the delay embedding space. In this
experiment, the delay parameter τ is fixed to 10 and
embedding dimension d � is chosen to be 8. Following the
approach in [70], we use principle component analysis
to project the embedding to 3-D for noise reduction.
To model the topology of the delayed observations
in 3-D, we measure the pairwise distances between sam-
ples as �si − s j�2 [71] and build the distance histogram
feature with a prespecified bin size.

3) Correlation features characterizing the dependence
between time-series signals. We calculate the absolute
value of the Pearson correlation coefficient. To account
for shift between the two signals, the maximum absolute

coefficient for a small range of shift values is identi-
fied. We ensure that the correlation matrix is a valid
kernel by removing the negative eigenvalues. Given the
eigen decomposition of the correlation matrix R =
UR�RUT

R, where �R = diag(σ1, . . . , σn) and σ1 ≥
· · · ≥ σr ≥ 0 ≥ σr+1 ≥ . . . ≥ σn , the correlation
kernel is constructed as K = UR�̂RUT

R, where �̂R =
diag(σ1, . . . , σr , 0, . . . , 0).

Fig. 8 illustrates the overall pipeline of this experiment. As it
can be observed, the statistics and shape representations are
explicit feature sources and hence the dense embeddings can
be constructed using the clustered Nyström method (through
RBF and χ2 kernel formulations, respectively). On the other
hand, the correlation representation is obtained directly based
on the similarity metric and hence we employ the conventional
Nyström approximations on the kernel. However, regardless
of the difference in dense embedding construction, the kernel
learning procedure is the same for both cases. From the
t-SNE visualizations in Fig. 8, we notice that the classes
sitting, standing, elevator up, and elevator down are difficult
to discriminate using any of the individual kernels. In com-
parison, the fused representation obtained using the M-DKMO
algorithm results in a much improved class separation, thereby
demonstrating the effectiveness of the proposed kernel fusion
architecture.

From the classification results in Fig. 9, we observe that
although FCN obtains better result on the set of statistics
features, it has inferior performance on shape and correla-
tion features. On the contrary, DKMO improves on kernel
SVM significantly for each individual feature set and is more
consistent than FCN. In the case of multiple kernel fusion
in Table III, we have striking observations: 1) For FCN,

Authorized licensed use limited to: ASU Library. Downloaded on March 29,2020 at 00:15:22 UTC from IEEE Xplore. Restrictions apply.

5538 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 29, NO. 11, NOVEMBER 2018

Fig. 9. Single kernel performance on USC-HAD data sets.

TABLE III

MULTIPLE KERNEL FUSION PERFORMANCE ON USC-HAD DATA SETS

the fusion performance is in fact dragged down by the poor
performance on shape and correlation features as in Fig. 9. 2)
The uniform merging of kernels is a very strong baseline and
the state-of-the-art UFO-MKL achieves lesser performance.
3) The proposed M-DKMO framework further improves over
uniform merging, thus evidencing its effectiveness in optimiz-
ing with multiple feature sources.

VI. CONCLUSION

In this paper, we presented a novel approach to perform
kernel learning using deep architectures. The proposed
approach utilizes the similarity kernel matrix to generate an
ensemble of dense embeddings for the data samples and
employs end-to-end deep learning to infer task-specific rep-
resentations. Intuitively, we learn representations describing
the characteristics of different linear subspaces in the RKHS.
By enabling the neural network to exploit the native space of
a predefined kernel, we obtain models with much improved
generalization. Furthermore, the kernel dropout process allows
the predictive model to exploit the complementary nature
of the different subspaces and emulate the behavior of ker-
nel fusion using a backpropagation-based optimization set-
ting. In addition to improving upon the strategies adopted
in kernel machine optimization, our approach demonstrates
improvements over conventional kernel methods in different
applications. We also showed that using these improved repre-
sentations, one can also perform MKL efficiently. In addition
to showing good convergence characteristics, the M-DKMO
approach consistently outperforms the state-of-the-art MKL
methods. The empirical results clearly evidence the usefulness
of using deep networks as an alternative approach to building
kernel machines. From another viewpoint, similar to the recent
approaches such as the convolutional kernel networks [23],
principles from kernel learning theory can enable the design
of novel training strategies for neural networks. This can
be particularly effective in applications that employ fully
connected networks and in scenarios where training data is
limited, wherein bridging these two paradigms can lead to
capacity-controlled modeling for better generalization.

REFERENCES

[1] V. Nair and G. E. Hinton, “Rectified linear units improve restricted
Boltzmann machines,” in Proc. 27th Int. Conf. Mach. Learn. (ICML),
2010, pp. 807–814.

[2] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
Jun. 2016, pp. 770–778.

[3] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet:
A large-scale hierarchical image database,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit. (CVPR), Jun. 2009, pp. 248–255.

[4] S. Abu-El-Haija et al. (Sep. 2016). “YouTube-8M: A large-
scale video classification benchmark.” [Online]. Available:
https://arxiv.org/abs/1609.08675

[5] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” in Proc. 32nd
Int. Conf. Mach. Learn., 2015, pp. 448–456.

[6] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, “Dropout: A simple way to prevent neural networks
from overfitting,” J. Mach. Learn. Res., vol. 15, no. 1, pp. 1929–1958,
2014.

[7] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Proc. Adv. Neural Inf.
Process. Syst., 2012, pp. 1097–1105.

[8] J. Zhang, M. Marszałek, S. Lazebnik, and C. Schmid, “Local features
and kernels for classification of texture and object categories: A com-
prehensive study,” Int. J. Comput. Vis., vol. 73, no. 2, pp. 213–238,
Jun. 2007.

[9] H. Lodhi, C. Saunders, J. Shawe-Taylor, N. Cristianini, and C. Watkins,
“Text classification using string kernels,” J. Mach. Learn. Res., vol. 2,
pp. 419–444, Feb. 2002.

[10] S. V. N. Vishwanathan, N. N. Schraudolph, I. R. Kondor, and
K. M. Borgwardt, “Graph kernels,” J. Mach. Learn. Res., vol. 11,
pp. 1201–1242, Mar. 2010.

[11] G. C. Cawley and N. L. Talbot, “On over-fitting in model selection and
subsequent selection bias in performance evaluation,” J. Mach. Learn.
Res., vol. 11, pp. 2079–2107, Jul. 2010.

[12] P. Drineas and M. W. Mahoney, “On the Nyström method for approx-
imating a Gram matrix for improved kernel-based learning,” J. Mach.
Learn. Res., vol. 6, pp. 2153–2175, Dec. 2005.

[13] A. Rahimi and B. Recht, “Random features for large-scale kernel
machines,” in Proc. NIPS, 2007, vol. 3. no. 4, pp. 1177–1184.

[14] M. Gönen and E. Alpaydín, “Multiple kernel learning algorithms,”
J. Mach. Learn. Res., vol. 12, pp. 2211–2268, Jul. 2011.

[15] Z. Sun, N. Ampornpunt, M. Varma, and S. Vishwanathan, “Multiple
kernel learning and the SMO algorithm,” in Proc. Adv. Neural Inf.
Process. Syst., 2010, pp. 2361–2369.

[16] J. Li and S. Sun, “Nonlinear combination of multiple kernels for support
vector machines,” in Proc. 20th Int. Conf. Pattern Recognit. (ICPR),
2010, pp. 2889–2892.

[17] P. Gehler and S. Nowozin, “On feature combination for multiclass object
classification,” in Proc. IEEE 12th Int. Conf. Comput. Vis., Oct. 2009,
pp. 221–228.

[18] C. Cortes, M. Mohri, and A. Rostamizadeh, “Learning non-linear
combinations of kernels,” in Proc. Adv. Neural Inf. Process. Syst., 2009,
pp. 396–404.

[19] A. Zien and C. S. Ong, “Multiclass multiple kernel learning,” in Proc.
24th Int. Conf. Mach. Learn., 2007, pp. 1191–1198.

[20] C. Cortes, M. Mohri, and A. Rostamizadeh, “Multi-class classifica-
tion with maximum margin multiple kernel,” in Proc. ICML, 2013,
pp. 46–54.

[21] H. Song, J. J. Thiagarajan, P. Sattigeri, K. N. Ramamurthy, and
A. Spanias, “A deep learning approach to multiple kernel fusion,”
in Proc. IEEE ICASSP. New Orleans, LA, USA, Mar. 2017,
pp. 2292–2296.

[22] J. Mairal, P. Koniusz, Z. Harchaoui, and C. Schmid, “Convolutional
kernel networks,” in Proc. Adv. Neural Inf. Process. Syst., 2014,
pp. 2627–2635.

[23] J. Mairal, “End-to-end kernel learning with supervised convolutional
kernel networks,” in Proc. Adv. Neural Inf. Process. Syst., 2016,
pp. 1399–1407.

[24] A. M. Andrew, An Introduction to Support Vector Machines and Other
Kernel-Based Learning Methods, N. Christianini and J. Shawetaylor,
Eds. Cambridge, U.K.: Cambridge Univ. Press, 2000, p. 189.

[25] H. Takeda, S. Farsiu, and P. Milanfar, “Kernel regression for image
processing and reconstruction,” IEEE Trans. Image Process., vol. 16,
no. 2, pp. 349–366, Feb. 2007.

Authorized licensed use limited to: ASU Library. Downloaded on March 29,2020 at 00:15:22 UTC from IEEE Xplore. Restrictions apply.

SONG et al.: OPTIMIZING KERNEL MACHINES USING DEEP LEARNING 5539

[26] I. S. Dhillon, Y. Guan, and B. Kulis, “Kernel k-means: Spectral
clustering and normalized cuts,” in Proc. 10th ACM SIGKDD Int. Conf.
Knowl. Discovery Data Mining (KDD), 2004, pp. 551–556.

[27] S. Yan, D. Xu, B. Zhang, H.-J. Zhang, Q. Yang, and S. Lin, “Graph
embedding and extensions: A general framework for dimensionality
reduction,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 29, no. 1,
pp. 40–51, Jan. 2007.

[28] J. J. Thiagarajan, K. N. Ramamurthy, and A. Spanias, “Multiple kernel
sparse representations for supervised and unsupervised learning,” IEEE
Trans. Image Process., vol. 23, no. 7, pp. 2905–2915, Jul. 2014.

[29] J. J. Thiagarajan, K. Ramamurthy, A. Spanias, and D. Frakes, “Kernel
sparse models for automated tumor segmentation,” U.S. Patent 9 710 916,
Jul. 18, 2017.

[30] M. Harandi, M. Salzmann, S. Jayasumana, R. Hartley, and H. Li,
“Expanding the family of Grassmannian kernels: An embedding per-
spective,” in Proc. Eur. Conf. Comput. Vis. (ECCV), 2014, pp. 408–423.

[31] S. Kumar, M. Mohri, and A. Talwalkar, “Sampling methods for the
Nyström method,” J. Mach. Learn. Res., vol. 13, no. 1, pp. 981–1006,
2012.

[32] K. Zhang and J. T. Kwok, “Clustered Nyström method for large scale
manifold learning and dimension reduction,” IEEE Trans. Neural Netw.,
vol. 21, no. 10, pp. 1576–1587, Oct. 2010.

[33] S. Kumar, M. Mohri, and A. Talwalkar, “Ensemble nystrom method,”
in Proc. Adv. Neural Inf. Process. Syst., 2009, pp. 1060–1068.

[34] A. Rahimi and B. Recht, “Random features for large-scale ker-
nel machines,” in Proc. Adv. Neural Inf. Process. Syst., 2008,
pp. 1177–1184.

[35] Q. Le, T. Sarlos, and A. Smola, “Fastfood—Approximating ker-
nel expansions in loglinear time,” in Proc. 30th Int. Conf. Mach.
Learn. (ICML), 2013, pp. 244–252. [Online]. Available: http://jmlr.org/
proceedings/papers/v28/le13.html

[36] P. S. Huang, H. Avron, T. N. Sainath, V. Sindhwani, and B. Ramabhad-
ran, “Kernel methods match deep neural networks on timit,” in Proc.
IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP), May 2014,
pp. 205–209.

[37] A. Rakotomamonjy, F. Bach, S. Canu, and Y. Grandvalet, “SimpleMKL,”
J. Mach. Learn. Res., vol. 9, pp. 2491–2521, Nov. 2008.

[38] A. Jain, S. V. Vishwanathan, and M. Varma, “SPG-GMKL: Generalized
multiple kernel learning with a million kernels,” in Proc. 18th KDD,
2012, pp. 750–758.

[39] P. Natarajan et al., “Multimodal feature fusion for robust event detection
in Web videos,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog-
nit. (CVPR), Jun. 2012, pp. 1298–1305.

[40] S. S. Bucak, R. Jin, and A. K. Jain, “Multiple kernel learning for visual
object recognition: A review,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 36, no. 7, pp. 1354–1369, Jul. 2014.

[41] F. Liu, L. Zhou, C. Shen, and J. Yin, “Multiple kernel learning in
the primal for multimodal alzheimer’s disease classification,” IEEE J.
Biomed. Health Inform., vol. 18, no. 3, pp. 984–990, May 2014.

[42] H. Song, J. J. Thiagarajan, K. N. Ramamurthy, and A. Spanias, “Auto-
context modeling using multiple kernel learning,” in Proc. IEEE ICIP,
Phoenix, AZ, USA, Sep. 2016, pp. 1868–1872.

[43] F. Orabona, L. Jie, and B. Caputo, “Multi kernel learning with online-
batch optimization,” J. Mach. Learn. Res., vol. 13, pp. 227–253,
Feb. 2012.

[44] M. Gönen and E. Alpaydin, “Localized multiple kernel learning,” in
Proc. 25th Int. Conf. Mach. Learn., 2008, pp. 352–359.

[45] R. Kannao and P. Guha, “TV commercial detection using success based
locally weighted kernel combination,” in MultiMedia Modeling. Berlin,
Germany: Springer, 2016, pp. 793–805.

[46] J. Moeller, S. Swaminathan, and S. Venkatasubramanian, “A unified view
of localized kernel learning,” in Proc. SIAM Int. Conf. Data Mining,
2016, pp. 252–260.

[47] J. Zhuang, I. W. Tsang, and S. C. Hoi, “Two-layer multiple kernel
learning,” in Proc. AISTATS, 2011, pp. 909–917.

[48] Y. Cho and L. K. Saul, “Kernel methods for deep learning,” in Proc.
Adv. Neural Inf. Process. Syst., 2009, pp. 342–350.

[49] M. A. Wiering and L. R. Schomaker, “Multi-layer support vec-
tor machines,” in Regularization, Optimization, Kernels, and Sup-
port Vector Machines. Boca Raton, FL, USA: CRC Press, 2014,
pp. 457–475.

[50] A. G. Wilson, Z. Hu, R. Salakhutdinov, and E. P. Xing, “Deep
kernel learning,” in Proc. 19th Int. Conf. Artif. Intell. Stat., 2016,
pp. 370–378.

[51] O. Levy and Y. Goldberg, “Neural word embedding as implicit
matrix factorization,” in Proc. Adv. Neural Inf. Process. Syst., 2014,
pp. 2177–2185.

[52] M. Li, W. Bi, J. T. Kwok, and B.-L. Lu, “Large-scale Nys-
tröm kernel matrix approximation using randomized SVD,” IEEE
Trans. Neural Netw. Learn. Syst., vol. 26, no. 1, pp. 152–164,
Jan. 2015.

[53] L. Kaufman and P. J. Rousseeuw, Finding Groups in Data: An Intro-
duction to Cluster Analysis, vol. 344. Hoboken, NJ, USA: Wiley, 2009.

[54] U. von Luxburg, “A tutorial on spectral clustering,” Stat. Comput.,
vol. 17, no. 4, pp. 395–416, 2007.

[55] J. R. Kwapisz, G. M. Weiss, and S. A. Moore, “Activity recognition
using cell phone accelerometers,” ACM SIGKDD Explorations Newslett.,
vol. 12, no. 2, pp. 74–82, Dec. 2010.

[56] M. Zhang and A. A. Sawchuk, “USC-HAD: A daily activity dataset for
ubiquitous activity recognition using wearable sensors,” in Proc. ACM
Conf. Ubiquitous Comput., 2012, pp. 1036–1043.

[57] H. Song, J. J. Thiagarajan, K. N. Ramamurthy, A. Spanias, and
P. Turaga, “Consensus inference on mobile phone sensors for activity
recognition,” in Proc. IEEE ICASSP, Shanghai, China, Mar. 2016,
pp. 2294–2298.

[58] O. Chapelle and A. Zien, “Semi-supervised classification by low density
separation,” in Proc. AISTATS, 2005, pp. 57–64.

[59] F. Orabona and L. Jie, “Ultra-fast optimization algorithm for sparse multi
kernel learning,” in Proc. 28th Int. Conf. Mach. Learn. (ICML), 2011,
pp. 249–256.

[60] F. Chollet et al. (2015). Keras. [Online]. Available: https://github.
com/fchollet/keras

[61] I.-H. Jhuo and D. Lee, “Boosted multiple kernel learning for scene
category recognition,” in Proc. 20th Int. Conf. Pattern Recognit. (ICPR),
2010, pp. 3504–3507.

[62] J. J. Thiagarajan, K. N. Ramamurthy, P. Turaga, and A. Spanias,
“Image understanding using sparse representations,” Synth. Lectures
Image, Video, Multimedia Process., vol. 7, no. 1, pp. 1–118,
2014.

[63] K. Ramamurthy, J. J. Thiagarajan, P. Sattigeri, and A. Spanias, “Ensem-
ble sparse models for image analysis and restoration,” U.S. Patent
14 772 343, Jan. 14, 2016.

[64] X. Qi, R. Xiao, C.-C. Li, Y. Qiao, J. Guo, and X. Tang, “Pairwise rotation
invariant co-occurrence local binary pattern,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 36, no. 11, pp. 2199–2213, Nov. 2014.

[65] C. S. Ong and A. Zien, “An automated combination of kernels for
predicting protein subcellular localization,” in Proc. Int. Workshop
Algorithms Bioinformatics, 2008, pp. 186–197.

[66] C. H. Ding and I. Dubchak, “Multi-class protein fold recognition using
support vector machines and neural networks,” Bioinformatics, vol. 17,
no. 4, pp. 349–358, 2001.

[67] A. Andreeva, D. Howorth, C. Chothia, E. Kulesha, and A. G. Murzin,
“SCOP2 prototype: A new approach to protein structure mining,” Nucl.
Acids Res., vol. 42, no. D1, pp. D310–D314, 2014.

[68] L. van der Maaten and G. Hinton, “Visualizing data using t-SNE,”
J. Mach. Learn. Res., vol. 9, pp. 2579–2605, Nov. 2008.

[69] S. Zhang, C. Tepedelenlioǧlu, M. K. Banavar, and A. Spanias, “Max
consensus in sensor networks: Non-linear bounded transmission and
additive noise,” IEEE Sensors J., vol. 16, no. 24, pp. 9089–9098,
Dec. 2016.

[70] J. Frank, S. Mannor, and D. Precup, “Activity and gait recognition with
time-delay embeddings,” in Proc. AAAI, 2010, pp. 1581–1586.

[71] V. Venkataraman and P. Turaga, “Shape distributions of nonlinear
dynamical systems for video-based inference,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 38, no. 12, pp. 2531–2543, Dec. 2016.

Huan Song (M’18) received the B.S. degree in
electrical engineering from Xidian University, Xi’an,
China, in 2012, and the M.S. degree in electrical
engineering from Arizona State University (ASU),
Tempe, AZ, USA, in 2015, where he is currently
pursuing the Ph.D. degree with the School of Elec-
trical, Computer, and Energy Engineering.

His current research interests include multimodal
fusion methods utilizing deep learning and multiple
kernel methods for time-series analysis and graph
mining.

Authorized licensed use limited to: ASU Library. Downloaded on March 29,2020 at 00:15:22 UTC from IEEE Xplore. Restrictions apply.

5540 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 29, NO. 11, NOVEMBER 2018

Jayaraman J. Thiagarajan (M’18) received the
Ph.D. and M.S. degrees in electrical engineering
from Arizona State University, Tempe, AZ, USA,
in 2008 and 2013, respectively.

He is currently a Computer Scientist with the
Center for Applied Scientific Computing, Lawrence
Livermore National Laboratory, Livermore,
CA, USA. He has co-authored two books. His
current research interests include machine learning,
computer vision, natural language processing,
signal processing, topological data analysis, the

investigation of using machine learning for science, clinical data analysis,
high-performance computing, computed tomography, and building tools for
model interpretability.

Dr. Thiagarajan was a recipient of the multiple Best Paper Nominations at
premier IEEE conferences. He has served as a reviewer for several IEEE,
ACM, Elsevier, and Springer journals and conferences.

Prasanna Sattigeri (M’18) received the Ph.D.
degree in electrical engineering from Arizona State
University, Tempe, AZ, USA, in 2015.

He is currently a Research Staff Member with
the IBM Research AI, Yorktown Heights, NY, USA.
His broad research interests include developing effi-
cient systems for machine learning and semantic
inferences from data. His current research interests
include deep generative models, learning with lim-
ited data, transfer learning and interpretability. He is
also interested in developing scalable solutions and

has experience shipping machine learning products to large consumer bases.

Andreas Spanias (F’18) is currently a Professor
with the School of Electrical, Computer, and Energy
Engineering, Arizona State University, Tempe, AZ,
USA, where he is also the Director of the Sensor
Signal and Information Processing (SenSIP) Center
and the Founder of the SenSIP industry consortium
(now an NSF I/UCRC site). He and his student
team developed the computer simulation software
Java-DSP and its award-winning iPhone/iPad and
Android versions. He has authored two text books:
Audio Processing and Coding (Wiley) and DSP and

An Interactive Approach (2nd Ed.). His current research interests include
adaptive signal processing, speech processing, and sensor systems.

Dr. Spanias was a co-recipient of the 2002 IEEE Donald G. Fink Paper
Prize Award. He served as an Associate Editor for the IEEE TRANSACTIONS

ON SIGNAL PROCESSING and the General Co-Chair of IEEE ICASSP-99.
He also served as the IEEE Signal Processing Vice President for Conferences.
He served as the Distinguished Lecturer for the IEEE Signal processing
society in 2004. He is a Series Editor for the Morgan and Claypool lecture
series on algorithms and software.

Authorized licensed use limited to: ASU Library. Downloaded on March 29,2020 at 00:15:22 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

