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Empirically Estimable Classification Bounds Based
on a Nonparametric Divergence Measure

Visar Berisha, Alan Wisler, Alfred O. Hero, 111, and Andreas Spanias, Fellow, IEEE

Abstract—Information divergence functions play a critical role
in statistics and information theory. In this paper we show that a
nonparametric f-divergence measure can be used to provide im-
proved bounds on the minimum binary classification probability of
error for the case when the training and test data are drawn from
the same distribution and for the case where there exists some mis-
match between training and test distributions. We confirm these
theoretical results by designing feature selection algorithms using
the criteria from these bounds and by evaluating the algorithms on
a series of pathological speech classification tasks.

Index Terms—Bayes error rate, classification, divergence mea-
sures, domain adaptation, nonparametric divergence estimator.

I. INTRODUCTION

A number of information-theoretic divergence measures be-
tween probability density functions have been introduced
and analyzed in the literature [1]-[5]. They have been exten-
sively used in many signal processing applications involving
classification [6], segmentation [7], source separation [8], clus-
tering [9], and other domains.

Among the different divergence functions, the family of f-di-
vergences or Ali-Silvey distances is perhaps the most widely
used in signal processing [10]. This family includes the total
variation distance, the Bhattacharya distance [1], the Kullback-
Leibler divergence [2], and more generally, the Chernoff a-di-
vergence [3], [4]. Because there exists an indirect relationship
between the class of f-divergences and the minimum achiev-
able error in classification problems [11], this family of diver-
gence measures is particularly useful for this setting. Consider
the problem of classifying a multi-dimensional feature vector, x,
into one of two classes, {0,1}. The conditional distributions are
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given by fy(x) and f1(x) and the prior probabilities are given
by p and g, respectively. The classifier that assigns a vector x to
the class with the highest posterior probability is called Bayes
classifier, and the error rate of this classifier is given by:

EBa»yes — /

pfo(x)<qfi(x)

pfo(x)dx + qf1(x)dx
qf1(x)<pfo(x)

(D
This is the minimum classification error rate, or the Bayes error
rate (BER), that can be achieved by any classifier. Computing
the BER requires evaluating a complicated multi-dimensional
integral. As an alternative, one can evaluate simpler expres-
sions that specify bounds on the BER in terms of measures
of distance or divergence between probability functions [3],
[12]-{14]. When the distributions fy and f; are unknown, these
bounds cannot be evaluated. In such a case it may be of interest
to estimate these bounds from empirical data.

In this paper, we derive a new bound on classification error
that is based on a probability distance measure that belongs to
the family of f-divergences. In the context of binary classifica-
tion, this divergence measure has a number of appealing prop-
erties: (1) there exists an asymptotically consistent estimator of
the divergence measure that does not require density estimates
of the two distributions; (2) we show that there exists a local
relationship between this divergence measure and the Chernoff
a-divergence; (3) we derive tighter bounds on the BER than
those based on the Bhattacharya distance and derive empirical
estimates of these bounds using data from the two distributions;
(4) we derive bounds on the minimum achievable error rate
for the case where training and test data in the classification
problem come from different distributions.

A. Related Work

There are three lines of research that are related to the work
presented in this paper: information theoretic bounds on the
Bayes error rate (and related quantities); bounds from the ma-
chine learning literature for the scenario where training and test
data come from different distributions; and recent work on em-
pirical estimates of the KL divergence.

The total variation (TV) distance is closely related to the
Bayes error rate [12]. A number of bounds exist in the litera-
ture relating the KL divergence and the TV distance. The well-
known Pinsker inequality provides a bound on the total variation
distance in terms of the KL divergence [15]. Sharpened inequal-
ities that bound the KL divergence in terms of a polynomial
function of the TV distance were derived in [16]. One draw-
back of the Pinsker-type inequalities is that they become unin-
formative for completely separable distributions where the KL
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divergence goes to oo (since the TV distance is upper bounded).
Vajda’s refinement to these bounds addresses this issue [17].

For classification problems, the well-known upper bound on
the probability of error based on the Chernoff a:-divergence has
been used in a number of statistical learning applications [3].
The tightest bound is determined by finding the value of o that
minimizes the upper bound. The Bhattacharya (BC) divergence,
a special case of the Chernoff a-divergence for & = %, upper
and lower bounds the BER [1], [12]. The BC bounds are often
used as motivation for algorithms in statistical learning because
these bounds have closed form expressions for many commonly
used distributions. In addition, for small differences between
the two classes, it has been shown that, in the class of Chernoff
«a-divergence measures, o« = % (the BC divergence) results in
the tightest upper bound on the probability of error [4].

Beyond the bounds on the BER based on the divergence
measures, a number of other bounds exist based on different
functionals of the distributions. In [13], the authors derive a new
functional based on a Gaussian-Weighted sinusoid that yields
tighter bounds on the BER than other popular approaches.
Avi-Itzhak proposes arbitrarily tight bounds on the BER in [14].
Both of these sets of bounds are tighter than the bounds we
derive here; however, these bounds cannot be estimated without
at least partial knowledge of the underlying distribution. A
strength of the bounds proposed in this paper is that they are
empirically estimable without knowing a parametric model for
the underlying distribution.

In addition to work on bounding the Bayes error rate, re-
cently there have been a number of attempts to bound the error
rate in classification problems for the case where the training
data and test data are drawn from different distributions (an
area known as domain-adaptation or transfer learning in the ma-
chine learning literature). In [18], [19], Ben-David et al. relate
the expected error on the test data to the expected error on the
training data, for the case when no labeled test data is available.
In [20], the authors derive new bounds for the case where a small
subset of labeled data from the test distribution is available. In
[21], Mansour et al. generalize these bounds to the regression
problem. In [22], the authors present a new theoretical anal-
ysis of the multi-source domain adaptation problem based on
the a-divergence. In [23], the authors use estimable bounds on
the domain adaptation error to develop an active learning algo-
rithm. In contrast to these models, we propose a general bound
based on a non-parametric f-divergence that can be estimated
without assuming an underlying model for the data and without
restrictions on the hypothesis class.

While previous bounds have proven useful in a number of
applications, a drawback shared by most divergence functions
(and corresponding bounds) is that they cannot be determined
without knowledge of the underlying distributions fy and f;.
For some of the more popular divergence measures, closed form
solutions are available for different types of parametric distribu-
tions [24]. More recently, a number of non-parametric methods
have been introduced to estimate information theoretic quan-
tities. Graph-based non-parametric estimators were introduced
in [25]. Plug-in estimates of existing divergence measures that
require density estimation have also been proposed [26]. More
recently, estimates of the KL divergence that rely on estimates
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of the likelihood ratio instead of direct density estimation have
been proposed [27],[28]. In [29] a minimal spanning tree (MST)
based estimator of a different kind of f-divergence measure was
investigated. Unlike other divergences, this f-divergence can be
estimated directly from the data without performing density es-
timation. This estimator was used in [29] to develop a nonpara-
metric estimator for the Fisher information. Whereas that paper
analyzes the utility of the proposed f-divergence for estimation
problems, this work focuses on its importance to binary classi-
fication tasks.

The rest of this paper is outlined as follows: In Section II,
we provide an overview of the divergence measure and its con-
sistent estimator. In Section III, we derive bounds on the BER
based on this probability distance measure and compare the
tightness of the bound with Bhattacharya bound and, more gen-
erally, with the bound based on the a-divergence. In Section IV,
we derive bounds on the classification error rate for the case
where the training and the test data come from different distri-
butions. In Section V, we provide numerical results that confirm
the validity of the bounds and describe two practical algorithms
for feature learning that aim to minimize the upper bound on the
error rate. Section VI contains concluding remarks and a discus-
sion of future work.

II. A NONPARAMETRIC DIVERGENCE MEASURE

For parameters p € (0,1) and ¢ = 1 — p consider the
following divergence measure between distributions fy and f;
with domain R%:

dx — (p —q)°

)
The divergence in (2), first introduced in [29], has the remark-
able property that it can be estimated directly without estimation
or plug-in of the densities fy and f; based on an extension of the
Friedman-Rafsky (FR) multi-variate two sample test statistic
[30]. Let us consider sample realizations from fy and f1, de-
noted by X, € RY*4 X; € R >?. The FR test statistic,
C(Xo,X1), is constructed by first generating a Euclidean min-
imal spanning tree (MST) on the concatenated data set, XqUX/,
and then counting the number of edges connecting a data point
from fj to a data point from f;. The test assumes a unique MST
for Xy U X;—therefore all inter point distances between data
points must be distinct. However, this assumption is not restric-
tive since the MST is unique with probability one when fy and
f1 are Lebesgue continuous densities. In Theorem 1, we present
an estimator that relies on the FR test statistic and asymptoti-
cally converges to D, ( fo, f1). Note that this theorem combines
the results of Theorem 1 and equations (3) and (4) in [29]. The
proof of this theorem can be found in Appendix A.
Theorem 1: As Ny — oo and N; — o0 in a linked manner
such that e Ny

1 [ / (pfo(x) — af1(x))?

Dol 1) =0 | | “oht0 + a0

No+Ny — pand No+Ny -9
No+ Ny
1-C(Xp,Xy)————>D .
C(Xo,X4) SNoN, »(fo, f1)

almost surely.
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Fig. 1. Anexample of the FR statistic for two scenarios, fo(x) =
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fi(x), and fo(x) # f1(x). The minimal spanning tree (MST) is constructed over both the red

colored realizations X and the blue colored realizations X from distributions f and fy, respectively. The number of edges in the MST that connect realizations

from different distributions (denoted in green) is the FR statistic C(Xo, X 1), used to estimate D,,. (a) fo(x) =

In Fig. 1(a) and 1(b) we show two numerical exam-
ples in order to visualize the results of Theorem 1—we
plot samples from two distributions, Xq ~ fo(x) and
X; ~ fi(x), and evaluate the value of C(X,y,X;). In
Fig. 1(a), both data sets are drawn from the same distri-
bution, fo(x) fi(x) = N([0,0]T,I). In Fig. 1(b), we
plot data drawn from fo(x) = N([ — @, f‘Tﬁ}T,I) and
fi(x) = N( [@, @]T, I). Iis the identity matrix. For both
data sets, an equal number of points are drawn, therefore
No = Ny = Nandp = q = % The dotted line in each
figure represents the Euclidean MST associated with X U Xy .
Edges of the MST that connect points from f; to points from
f1 are highlighted in green. The number of green lines is the
FR statistic, C(Xg,X1), used to estimate D, (fq, f1) using the
results of Theorem 1. It is clear from the figures that this value
is much smaller for overlapping distributions (Fig. 1(a)) than
for separable distributions (Fig. 1(b)). Indeed, as Theorem 1
suggests, in the limit, a function of this statistic converges to
the integral used in the divergence measure in (2).

In the ensuing sections we outline some important properties
of this divergence measure and develop new bounds for classi-
fication using this distance function between distributions.

A. Properties of D,

The divergence measure (2) exhibits several properties
that make it useful for statistical classification. It is relatively
straightforward to show that the following three properties are
satisfied.

no<p, <1

2) Dp =0 <= fo(x) = fi(x).
3) Dp(fo, f1) = Dy(f1, fo)

The lower bound in the first property follows from the fact
that when fo = f; and p = ¢, the minimum value of D,, is 0.
To show that the divergence measure is upper bounded by 1, we
first note that

/ (pfo(x) — qfl(X))ZdX
pfo(x) + af1(x)

= 1—4qup(f07f1)a (3)

F1(x); (b) fo(x) # fi(x).

where
Y N (1637 1CI
i 80 = [ o5

The function A4,(fy, f1) attains its minimum value of 0, when
fo and f; have no overlapping support (since fo(x) > 0 and
f1(x) > 0 for all x); therefore D, = -[1 — (p — ¢)*] = 1.
The second property is closely related to the first: the minimum
value D, = 0 is attained only when fy = f; and p = g. The
third property follows from commutativity.

The divergence measure in (2) belongs to the class of f-di-
vergences. Every f-divergence can be expressed as an average
of the ratio of two distributions, weighted by some function

4)

8(1) Dyl fo. f1) = J & (£03) Fr(x)dxe. For Dy(fo, ). the
corresponding function ¢(t) is,
L [(pt—4q)? 2]
)= — [P gy 12, 5
o) = o | Z22 - -1 ©
Furthermore #(t) is defined for all £ > 0, is convex—¢’' (¢) =

(pt +q)3 > 0, and #(1) = 0. This is consistent with the require-
ments of the definition of an f-divergence [10]. Indeed, for the
special case of p = %, the divergence in (2) becomes the sym-
metric x? f-divergence in [5] and is similar to the Rukhin f-di-
vergence in [31].

III. BOUNDS ON BAYES CLASSIFICATION ERROR

In this section, we show how DJ,, in (2) can be used to bound
the Bayes error rate (BER) for binary classification. Further, we
show that, under certain conditions, this bound is tighter than
the well-known Bhattacharya bound commonly used in the ma-
chine learning literature and can be empirically estimated from
data.

Before deriving the error bounds, for notation convenience,
we introduce the function uy, (fo, f1),

L _ A
up(fo, f1) =1 4pq/pf0(x)+Qf1(X)d
_/(pfo(X)Qfl(X))zdx

pho() +ah(x)

(6)
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Up (p— q
4pq

It is easy to see that D, =
= 0.5, D, = uyp.

Given a binary classification problem with binary labels y
€ {0,1} and x drawn from fs(x) the source-domain distri-
bution,! we denote the conditional distributions for both classes
as fo(x) = fs(xly — 0) and fi(x) = [s(xly = 1). We
draw samples from these distributions with probability p and g
= 1 — p, respectively, and formulate two data matrices denoted
by Xy € RV and X; € R %4 The Bayes error rate asso-
ciated with this problem is given in (1). In Theorem 2 below, we
show that we can bound this error from above and below using
the divergence measure introduced in the previous section. The
proof of this theorem can be found in Appendix B.

Theorem 2: For two distributions, fo(x) and f1(x), with
prior probabilities p and ¢ respectively, the Bayes error rate,
ePaves s bounded above and below as follows:

g and when p = ¢

up(fo, f1),

L\DI»—!
l\.')lr—l

1
5V o, f1) < eBaves <

Lo | =

where

up(fos f1) = 4paDp(fo, f1) + (p — q)*

For fo(x) = f1(x), the BER is 0.5. Under these conditions,
up(x) = 0, and both the upper and lower bounds in Theorem
2 are equal to 1/2. For the case where fy(x) and f;(x) have
disjoint support, the BER is 0, u,(x) = 1, and both the upper
and lower bounds are equal to 0.

Combining the results from Theorem 1 with the results of
Theorem 2, the upper and lower bounds on the BER can be
consistently estimated from the data matrices Xy and X as

11 11 (X, Xy)
373 up(fo, f1) = 373 1 *2W7
and
1 C(Xo,X4)
3 gl )= R

A. Relationship to the Chernoff Information Bound

Here we compare the tightness of the bounds specified by
Theorem 2 to the bounds based on the Chernoff information
function (CIF) [4], defined as

La(for f1) = / P (x)gt e FL® (x)dx

In Theorem 3, we give an important relationship between the
affinity measure, A,(fo, f1), and a scaled version of the CIF.
The proof of this theorem can be found in Appendix C.

'We use the notation with subscript S in order to maintain consistency with
Section IV, where we consider the case where the source (training) and target
(testing) distributions are different.
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Theorem 3: The affinity measure, A,(fo, f1), is a lower
bound for a scaled version of the Chernoff information func-
tion:

Ap(for ) < / F9() 7 () dx.

It is important to note that the right side of the inequality in
Theorem 3 is exactly equal to the CIF fora = p = ¢ = 1/2.
For this special case, the Chernoff bound reduces to the Bhat-
tacharyya (BC) bound, a widely-used bound on the Bayes error
in machine learning that has been used to motivate and develop
new algorithms [12], [32], [33]. The popularity of the BC bound
is mainly due to the fact that closed form expressions for the
bound exist for many of the commonly used distributions. The
Bhattacharya coefficient is defined as:

BC(fo, f1) = 2 / paFo () Fa(x)dx.

The well-known Bhattacharya bound on the BER is given by
[12]

O]

Bayes

BC(fo, f1)- (8

l\')l»—l

= BC*(fo, 1) <«

B | =
N | =

In Theorem 4 below, we show that, for equiprobable classes
(p = ¢ = 1/2), the D, bound in Theorem 2 provides tighter
upper and lower bounds on the BER when compared to the
bound in (8) based on the BC coefficient under all separability
conditions. The bound in Theorem 2 may not be tighter than the
BC bound for non-equiprobable classes. The proof of Theorem
4 in Appendix D.

Theorem 4: Forp = q = %, the D,, upper and lower bounds
on the Bayes error rate are tighter than the Bhattacharyya
bounds:

s VT B0, 11) < 5 — 51fuy (o 1)
1 1 1
< 6Bayes < 5 — Eu%(fo, ) 5 (anfl)

Using asymptotic analysis of the Chernoff exponent, for
small differences between the two classes, it was shown that
a = % results in the tightest bound on the probability of
error—this corresponds to the bound in (8) [4]. Using a variant
of this analysis, we derive a local representation of the CIF and
relate it to the divergence measure proposed here. In particular,

if we let

piolx) = 3 (pfolx) +afa(3)) + 5 (fo() — afi ()
=filx )<1+ ;A )
where f1(x) = 3(pfo(x) + ¢fi(x)) and Ay = (pfo(x) —

qf1(x)) }7( )_Similarly,

i) = 1360) (1 5 )
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As in [4], after a Taylor series expansion around p® f§'(x) and
g' ®f17%(x), the Chernoff information function can be ex-
pressed as (see proof of Proposition 5 in [4]):

=5~ a1 -1))2

_ a(l — OA) / (pfo(x) B Qfl(x))QdX+0(A2)
2 pfo(x)+afi(x)
a(l — a)
2

The local equivalence of D, and I, is not surprising since

all f-divergences are locally equivalent (they induce the same

Riemann-Fisher metric on the manifold of densities) [10]. This

useful property allows us to estimate the CIF for small differ-

ences between fg and f; using the MST procedure in Section II.

Further, we can express the BER in terms of the CIF:

a(l — a)

————up(fo, f1)-

2

For p = ¢ = 4, this bound reduces to €B¥® <
;- Mu% (fo, f1)- This is very similar to the upper bound
in Theorem 2, differing only in the scale of the second term.
Further, it is easy to see from this that the bound in Theorem 2
is tighter than the Chernoff bound since M < % for all .
This is not surprising since, locally, a = 0.5 yields the tightest
bounds on the BER [4]. This corresponds to the BC bound in
(8) and we have already shown that new bound is tighter than
the BC bound in Theorem 4. This analysis further confirms that
result.

In addition to providing tighter bounds on the BER we can
estimate the new IJ,, bound without ever explicitly computing
density estimates. We provide a numerical example for com-
parison. We consider two data samples from two classes, each
of which comes from a normally distributed bivariate distribu-
tion with varying mean and spherical unit variance. The sepa-
ration in means between the two class distributions is increased
incrementally across 150 trials with 1000 samples drawn from
each distribution for each trial. The two distributions completely
overlap initially, and are almost entirely separated by the final
trial. In each trial we calculate the BER analytically using (1), as
well as the upper and lower bounds introduced in Theorem 2.
We calculate the bounds both analytically (through numerical
integration) and empirically (using the results from Theorem
1). In order to demonstrate the tightness of this bound we also
plot it against the upper and lower Bhattacharyya error bounds
for Gaussian data (the closed form expression of the bound for
Gaussian data is known) [12]. Fig. 2 displays the true BER along
with both error bounds as a function of the Euclidean separation

=(p+a)—2ap— up(fo, f1) + o(A?)

PeS < T~ (p4 ) — 2ap —

——Bayes Error
—— Theoretical D, Bound

0.5 .| — Estimated D, Bound

Bhattacharyya Bounds

Error Probability
o o
w i

o
N
T

01f

0 0.5 1 1.5 2 25 3

0 i i

Mean Separation

Fig.2. The D, and BC bounds on the Bayes error rate for a bivariate Gaussian
example.

between the means of two bivariate normal distributions of unit
variance. We see in this plot that the proposed error bounds are
noticeably tighter than the Bhattacharyya error bounds and are
well correlated with the true BER. Although the analytically cal-
culated D, bound never crosses the BC bound, the empirically
estimated D, bound crosses the BC bound for small values of
the mean separation. This is due to the bias/variance of the esti-
mator resulting from a finite sample size. It is important to note
that the estimator used here asymptotically converges to the D,
divergence. However, it is impossible to construct a nonpara-
metric estimate of the BER that rapidly converges to the true
BER regardless of the data distribution [34]. Devroye showed
that, regardless of the estimator used for the BER, no estimator
converges rapidly for all distributions (Theorem 8.5, in [35]).

IV. BOUNDS ON THE DOMAIN ADAPTATION ERROR

In this section, we consider a cross-domain binary classifi-
cation problem and show how the D,, divergence can be used
to bound the error rate in this setting also. In domain adapta-
tion, the goal is adapt a model trained in some domain (the
source domain) where data is plentiful, so that it can be ap-
plied to desired problem in a similar domain (the target do-
main) where labeled data is scarce. Let us define data from
the two domains, the source (training) and the target (testing)
domain and the corresponding labeling functions for each do-
main yg(x),yr(x) € {0,1} that yields the true class label
of a given data point x. The source domain, denoted by the
pair (Xg,ys), represents the data used to train the machine
learning algorithm and the data (X, yr) represents the data
the algorithm will encounter once deployed. Let us further de-
fine the conditional distributions fso(x) = fs(x|ys(x) = 0)
and fs1(x) = fs(x|ys(x) = 1). The rows of the source and
target data are drawn from fs(x) and fr(x). The risk, or the
probability that the decision, %, disagrees with the true label is
defined as

es(hyys) = By [[R(x) — ys(x)]], ©)
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for the source data. It is similarly defined for the target data. In
Theorem 5, we identify a relationship between the error rates
on the source and target data. The proof of this theorem can be
found in Appendix E.

Theorem 5: Given a hypothesis, , the target error, et (h, y1),
can be bounded by the error on the source data, eg(h, yg), the
difference between labels, and a distance measure between
source and target distributions as follows:

er(hyr)<es(hoys) +Eps [lys(x) — yr(X)l]+24/us (fs,fr),
(10)
where u,, is defined in Theorem 2.

The bound in Theorem 5 depends on three terms: the error
on the source data, the expected difference in the labeling func-
tions across the two domains, and a measure of the divergence
between source and target distributions. We expect that the se-
lected training algorithm will seek to minimize the first term;
the second term characterizes the difference between labeling
functions in the source and target domains; the third term is of
particular interest to us—it provides a means of bounding the
error on the target data as a function of the distance between
source and target distributions.

In the covariate shift scenario, we assume that there exists no
difference between labeling functions (e.g. ys(x) = yr(x)) and
only the distributions between the source and target data change
[19]. Under this assumption, the bound in Theorem 5 reduces to

er(h,yr) < es(h,ys) + 24 /us(fs, fr).

Furthermore, if we assume that the decision rule A attains the
Bayes error rate, eBaves on the source domain, we can use the
results from Theorem 2 to rewrite the bound in Theorem 2 using
only the D, divergence:

ui(fs,0, fs,1) + 24 /us (fs, fr).-

If we denote the training data matrices by Xsa ~ fso and
Xs,1 ~ fs,1, then we can estimate this upper bound using the
FR test statistic by

C(Xs0,X C(Xs, X
CXs0 Xs1) | o 1 oCKs Xn) (13)
Ng,o + Ns 1 Ns + N

The result shown in (13) represents an upper bound on the
target domain error that can be computed without access to any
labels in the target domain. This bound provides interesting in-
sight on the importance of invariant representations for classi-
fication. The target error is bounded by the sum of the affinity
between class distributions in the source domain and the square
root of the D,,-distance between domains. Because of the square
root and the multiplicative factor, it is clear that the second term
in (13) is weighted much more heavily. This stresses the im-
portance of invariant representations in classification. In other
words, the bound provides a means of quantifying the rela-
tive importance of selecting features that are invariant across
domains versus features that provide good separation between
classes in the source domain.

(11)

(12)

N =
DO =

er <
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TABLE I
PARAMETERS FOR 2 8-DIMENSIONAL GAUSSIAN DATA SETS FOR WHICH THE
BAYES ERROR RATE IS KNOWN (FROM [24])

] 0 0 0 0 0 0 0 0
p, 1| 1 1 1 1 1 1 1 1
p2 | 2560 0o 0o 0 0 0 0
o2 | 1 1 1 1 1 1 1 1
| 0 0 0 0 0 0 0 0
p, o1 1 1 1 1 1 1 1
2 4p | 386 310 084 084 164 1.08 026 001
o2 | 841 1206 0.2 022 149 177 035 273

V. NUMERICAL RESULTS AND PRACTICAL ALGORITHMS

Here, we describe a number of numerical experiments that
evaluate the bounds in a classification setting. In the first ex-
periment, we evaluate the tightness of the bound on the Bayes
error rate in higher dimensions by comparing against two other
bounds for an example where the Bayes error rate is known
in closed form. In the second and third experiments, we de-
velop new criteria for feature selection based on the derived
bounds and compare the probability of correct classification
against competing alternatives.

A. Bounding the Bayes Error Rate

Consider the two data sets D¢ and D5 in Table I, each con-
sisting of data from two 8 dimensional Gaussian distributions.
In [24] Fukunaga computed the true Bayes error rate analyti-
cally for both of these data sets. Here we compare three different
bounds on this error for both datasets—the D,,-based bound, the
Mahalanobis bound, and the BC bound [36]. We use the closed-
form version of the BC and Mahalanobis bound for Gaussian
data [24], [36]. Furthermore, we assume perfect knowledge of
the parameters for these two bounds (¢ and ). As a result,
this is the best possible case for both of these bounds—the data
matches the model and no estimation of the parameters is re-
quired.

For both data sets Dy and D,, we evaluate the D,-based
upper bound between the two distributions using the graph-
based method outlined in Section II for three different sample
sizes (100 samples, 500 samples, and 1000 samples—50 Monte
Carlo simulations each). We compare the I, bound (computed
from empirical data without assuming any parametric model of
the data distribution) with the Bhattacharyya bound and the Ma-
halanobis bound. The Mahalanobis bound is defined as

Bayes 2pq

€ < 1T oA PPN (14)
where A = (g — p1)TS (o — p1) and g, g1 represent the
means of the class distributions; X is the weighted average of
the two covariance matrices for the classes, > = pX¥y + g%
[37]. A comparison between the three bounds is presented in
Table II. For both data sets, the average D,-based bound is
closer to the true error rate, regardless of the sample size. Again,
it is important to stress that this is the best case scenario for
the competing bounds since there exists a closed form expres-
sion for both bounds for Gaussian data and we assume perfect
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TABLE 11
COMPARING UPPER BOUNDS ON THE BAYES ERROR RATE FOR THE
MULTIVARIATE GAUSSIANS DEFINED IN TABLE I

Data 1 Data 2
Actual Bayes Error 10% 1.90%
Mahalanobis Bound 18.95% 14.13%
Bhattacharyya Bound 22.04% 4.74%

Dy Bound (100 points)
Dy Bound (500 points)
D, Bound (1000 points)

18.23% =+ 3.32%
16.88% =+ 1.51%
16.46% + 1.14%

4.10% + 1.10%
2.17% + 0.42%
1.94% =+ 0.29%

knowledge of the distribution parameters. Regardless, the em-
pirically-estimated ), bound is still tighter.

B. Feature Selection Using D,-Distance

In machine learning, feature selection algorithms are often
used to reduce model complexity and prevent over-fitting [38].
In many scenarios, feature selection can actually improve
model performance since the reduced dimensionality leads to a
much more densely populated hypothesis space. This prevents
the model from learning irrelevant patterns in the training data
that are not pertinent for a given task and will not generalize to
new datasets. This problem is exacerbated in domain adaptation
problems where the separation in domains makes misleading
patterns in the training data especially problematic. We use the
bounds defined in Theorems 2 and 5 to develop new feature
selection criteria that aim to directly minimize the BER bound.
We consider two different scenarios: (1) one where the training
data and the test data come from the same distribution and (2)
another where the training data and the test data come from
different distributions. For both scenarios, we seek to identify
the subset of features, €2, that will minimize the “worst-case”
error. For scenario 1, this results in minimizing the upper bound
in Theorem 2:

(15)

and, for scenario 2, we minimize the domain adaptation (DA)
bound defined in Theorem 5:

sy C Kol Xaa() |, [0 (el X (@)
o NS70+NS’1 ’ Ng+ N )
(16)

We integrate the optimization criteria into a forward selec-
tion (FS) search algorithm in Alg. 1. In this algorithm, we use a
parameter « to determine whether or not the algorithm should
account for the separation between domains. For traditional ma-
chine learning problems o: should be set to 0. For domain adap-
tation problems, « is set to 1 to minimize the error upper bound,
or tuned based on the importance of minimizing the separation
between domains. We set « to 1 for all DA experiments re-
ported in this paper—this corresponds directly to the bound in
Theorem 5.

Algorithm 1: Forward selection algorithm using D,,-distance

Input: Feature data from two different classes in the source
domain and unlabelled data from the target
domain: X3 9, Xg.1, X, &

Output: Top k features that minimize @:

Q
Define: 2 = (

F=1...M

Xs = Xg,0UXg,1
forj€1...kdo

=10
for F; € FF\ Q do
N - C(Xs0{QUF) X5 1 (QUF))
QS(F’) — Ns,0+Ns,1
C(Xs(QUF,), X1 (QUF;))
+20/1 - 2 )X
end for

Q=QU {argmin@(Fi)}
B

end for

We empirically evaluate the feature selection algorithm on
a pathological speech database recorded from patients with
neurogenic disorders. In particular, we consider the problem of
classifying between healthy and dysarthric speech. Dysarthria
is a motor speech disorder resulting from an underlying neu-
rological injury. We make use of data collected in the Motor
Speech Disorders Laboratory at Arizona State University,
consisting of 34 dysarthric speakers and 13 healthy speakers
(H). The dysarthria speakers included: 12 speakers with
ataxic dysarthria, secondary to cerebellar degeneration (A),
10 mixed flaccid-spastic dysarthria, secondary to amyotrophic
lateral sclerosis (ALS), 8 speakers with hypokinetic dysarthria
secondary to Parkinson’s Disease (PD), and 4 speakers with hy-
perkinetic dysarthria secondary to Huntington’s disease (HD).
Each patient provided speech samples, including a reading
passage, phrases, and sentences. The speech database consists
of approximately 10 minutes of recorded material per speaker.
These speech samples were taken from the larger pathological
speech database described in [39].

The recordings from each speaker were split into individual
sentences by hand and features were extracted at the sentence
level. Three different feature sets were used: envelope mod-
ulation spectrum (EMS) features, long-term average spectrum
(LTAS) features, and ITU-T P.563 features. EMS is a repre-
sentation of the slow amplitude modulations in a signal and
captures aspects of the speech signal related to rhythm. The
LTAS features capture atypical average spectral information in
the signal. The P.563 features measure atypical and unnatural
voice and articulatory quality. For a more detailed discussion of
these features, we refer the readers to [40].

In our first experiment we evaluate the forward selection al-
gorithm (Algorithm 1) based on the criteria in (15). We consider
the problem of discriminating between healthy and dysarthric
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Fig. 3. A comparison of the average classification as a function of feature set
size using both the BC and D,, criteria.

speech based on the three feature sets discussed above. For this
experiment we form both the training and test sets by randomly
drawing 300 dysarthric speech samples and 300 healthy speech
samples for each set, ensuring that there is no overlap between
training and test data. Using the FS algorithm in Alg. 1, we
use the training data to find the top 20 features that maximize
the separability between the two groups. We compare this fea-
ture selection algorithm against one based on maximizing the
Bhattacharyya distance between classes. As before, the BC dis-
tance is estimated under the assumption that the data follows
a Gaussian distribution and the closed form expression for the
BC is used. Using the feature subsets chosen by the two algo-
rithms, we build support vector machine (SVM) classifiers on
the training data and evaluate their accuracy on the test data.
This experiment is repeated ten times using different randomly
generated training and test sets, and the average accuracy is dis-
played in Fig. 3.

The results of this experiment indicate that the initial fea-
tures selected by the D,,-divergence criteria provide faster con-
vergence to the maximum classification rate when compared to
those selected by the BC criteria; however, as expected, as ad-
ditional features are selected, both algorithms eventually con-
verge to roughly the same level of performance. We purpose-
fully restrict ourselves here to a very limited training set (300
samples per class) in order to evaluate the D,-distance in a
small N setting. Next, we consider the same problem but with
a variable number of training samples per class. The results of
this experiment are presented in Table III. As the number of
training instances increases, the classifier success rate increases
for the D,,-based method, however it stays relatively flat for the
BC-based method. For very small values of N, the bias/variance
associated with the D,,-distance estimator seems to results in
features that provide poorer separability when compared to the
BC method. Given that the results of this estimator are asymp-
totic, this is expected. As the number of features increase, both
the D,, and BC algorithms converge to approximately the same
value.

Next we would like to investigate the efficacy of the FS cri-
teria (16) in a domain adaptation setting. We consider the same
problem here—discriminating between healthy and dysarthric
individuals; however now we train on data from one disorder

587

TABLE III
AVERAGE CLASSIFICATION ACCURACIES (IN PERCENT) OF TOP 10 FEATURES
SELECTED BY D, AND BC DIVERGENCE

Number of Algorithm Number of Training Instances

Features 100 200 300 400 500
10 BC 86.88 8693 87.61 8798 87.22
Dy 86.36 88.67 89.59 89.20 90.03

15 BC 90.84 90.46 90.51 91.69 90.88
Dy, 88.08 90.66 92.00 92.12 92.72
20 BC 91.10 93.02 9335 9398 93.72
D, 89.28 9215 9320 9341 94.21

and evaluate on data from another disorder. In order to parti-
tion the data into dissimilar training and test groups, we start by
selecting 300 healthy instances for the training set and 300 (dif-
ferent) healthy instances for the test set. The rest of the training
and test data is made up of 300 randomly selected samples from
one of the four Dysarthria subtypes: Ataxic, ALS, Huntington’s
and Parkinson’s. Each model is then evaluated on the test sets
for each subtype not contained in the training set.

Using each training set-test set combination, we generate fea-
ture subsets using the proposed selection algorithm, along with
three competing algorithms that are used for comparison. The
first algorithm we use for comparison is a standard forward
selection algorithm based on the BC distance, which is com-
puted in closed form assuming that under the assumption that
the class distributions of fg are Gaussian. This algorithm is used
as a baseline for comparison, however because it assumes the
training and test data come from the same distribution [41], we
expect it to perform poorly relative to the other algorithms. Next
we use the same Bhattacharyya FS algorithm, however we ac-
count for the separation in domains by using feature normaliza-
tion, as described in [42], prior to feature selection. We refer to
this method as BC with feature normalization (BCFN).

The final domain-invariant feature learning algorithm we
compare against is based on Conditional Probability Models
(CPM), as described in [43]. This approach attempts to select
a sparse mapping that maximizes an objective function that
trades off between prediction algorithm performance and the
distance between target and source distributions (controlled
by a Lagrangian parameter A). For classification, the logistic
regression function is used and a penalization term is added to
ensure that the mapping contains minimal contribution from
features containing large differences between source and target
data. For the specifics of the implementation, we refer the
reader to [43]. The same parameter settings are used here. Be-
cause this approach utilizes an optimization criteria involving
a trade-off between the source-domain separation and the
train-test separation, it resembles the proposed FS algorithm
more closely than any other method proposed in the literature.

We present the average classification accuracies yielded by
the top 20 features from each FS algorithm for each train-test
combination in Table IV. The algorithm proposed in this paper
achieved the highest classification accuracy in 8 of the 12 trials,
while the BC algorithm scored the lowest 8 of 12 trials. The re-
sults clearly illustrate the importance of utilizing domain adap-
tation in this type of scenario; even an approach as simple as
feature normalization yields roughly 8.5% higher classification
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TABLE IV
CLASSIFICATION ACCURACIES OF SVM CLASSIFIER USING THE ToP 20
FEATURES RETURNED BY EACH FEATURE SELECTION METHOD FOR EACH
COMBINATION OF TRAINING AND TEST DATA

Trial Source Target BC BCFN CPM D,
1 Ataxic ALS 56.50 7328 75.82  76.22
2 Ataxic Huntington’s  56.83  72.52 70.12 75.12
3 Ataxic Parkinson’s  49.27  60.75 58.53 64.43
4 ALS Ataxic 5295 6635 54.68 67.15
5 ALS Huntington’s  64.25  73.67 65.50 72.23
6 ALS Parkinson’s ~ 54.32 6597 69.48 73.60
7 Huntington’s Ataxic 4995 53.63 43.00 49.30
8 Huntington’s ALS 6340 64.12  63.17 173.00
9 Huntington’s ~ Parkinson’s  59.48 6222 69.73 76.03
10 Parkinson’s Ataxic 41.13  55.65 42.15 48.23
11 Parkinson’s ALS 62.10 6630 61.25 67.35
12 Parkinson’s ~ Huntington’s 73.67 71.12 64.47 68.98

70
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Fig. 4. Average Classification Accuracy on foreign subtypes using reduced
feature sets. The proposed D,-based method outperforms the competing
algorithms.

accuracy on average. To observe the value of the lower-dimen-
sional subsets generated by each algorithm, we average the ac-
curacy across all twelve trials and display the accuracy as a func-
tion of the number of features in Fig. 4. We can see in this figure
that the performance of the proposed algorithm consistently im-
proves as additional features are added. Because the optimiza-
tion criterion we have selected minimizes the upper bound on
the error, the algorithm has a tendency to pick “safe” features;
e.g. using this algorithm invariant features are preferred, even if
they are less informative in the source domain.

To better understand how DA helps us build robust models,
we look at the top two features returned general and DA FS cri-
terions proposed in this paper. Fig. 5(a) displays the training and
test data plotted across the top two features returned by the gen-
eral FS criteria. We see that these two features represent a strong
separation between the two classes in the training set, however
this separation is not similarly represented in the test data, and
as a result these features will not be beneficial. Fig. 5(b) displays
the data plotted against the top two features returned by the DA
FS criteria. Even though the separation between classes in the
training data is not as noticable as in the features returned by the
general criteria, both Dysarthria subtypes manifest themselves
very similarly within this feature space, and as a result models
built on them will generalize well between these two subtypes.

Source Data Plot Target Data Plot

| Healthy | Healthy
0.65 o Dysarthric 0.65 o Dysarthric
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2 2
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(a) Source and target data using top domain-specific features
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Fig. 5. Top two features selected using a domain-specific criterion (a) and do-
main-invariant criterion (b; DA FS). The source domain is ALS and the target
domain is Parkinson’s. The DA FS criterion results in features that better gen-
eralize to new domains. (a) Source and target data using top domain-specific
features; (b) source and target data using top domain-invariant features.

VI. CONCLUSION

In this paper we showed that a nonparametric f-divergence
bounds the Bayes classification error rate for two scenarios: the
case where training and test data come from the same distribu-
tion and the case where training and test data come from dif-
ferent distributions. For the first case, we show that the bound
is tighter than the commonly used Bhattacharyya bound on the
Bayes error. Our experimental results confirm the theoretical
findings—when used as a feature selection criterion in a patho-
logical speech classification problem, the D, -divergence yields
an improved classification rate with fewer features as compared
against popular alternatives.

Future work revolves around analyzing the estimator of the
Dy-divergence. In particular, understanding the convergence
properties of the estimator as a function of the sample size and
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data dimension will yield insight into the fidelity of the estima-
tion for any given data set. Furthermore, characterizing the bias
and variance of this estimator may allow us to apply ensemble
estimator methods of [44] to improve estimation accuracy for
high dimensional feature space.

APPENDIX A

PROOF OF THEOREM 1

By combining (2) and (3) we can rewrite

1
D, = i (1 —4pgAy(fo, /1) — (p— 0)?] (17)
1-(p-9)?
=T apg — Ap(fo, f1) (18)
:17Ap(f0,f1)7 (19)

where,

[ awne
Ap(fmfl)—/pfo(x)—l—qfl(x)d

From Theorem 2 in [45], we know that as Ny — oo and

N : . N,
N7 — oo in a linked manner such that . +°N1 — p and
— 4,

N1
Ng+ Ny
(f07 fl)

N0+N —>2qu (f05f1)7

(20)
almost surely.

Combining the asymptotic relationship in (20) with the re-
sults from (19), we see that

O f) ot N

2NN Dp(fO,fl),

ey

almost surely as Ny — ¢ and N; — o0 in a linked manner

such that — pand —q.

No+ N1 +N No+N1 +N1

APPENDIX B

PROOF OF THEOREM 2

We begin with the realization that the Bayes error rate can be
expressed in terms of the total variation (TV) distance between
distributions [12]:

eBayes _ % _ %/‘p]‘b(x) _ qfl(x)| dx. (22)

Next, we show that we can bound the TV distance from above
and below using uy:

up =1 — 4pqAp(fo, f1)
4 fo(x)f1(x) N
=! 4pq/pfo(x +qf1(X)d

)

)
= [ b = a0 ax

(23a)
(23b)

fo(x) f1(x)
o [ Phox) T afi () (23¢)
[ [pfo(x) + afi(x)]* — dpafo(x) f1(x)
-/ Do) T a1 (%) B (23)
[ pfo(x)? + afi(x)* = 2pqfo(x) f1(x) " .
-/ Do) T ah1(x) b (239
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[ Ipfox) — afix)])? .
= [ a0 (30

|Pf0 (x) — qf1(x)|
/|Pf0 ) —afi(x )\ ) T ah ) dx. (23g)
Since
i;gg; 1228 <1 forallx, (24)
we can simplify (23g) to

L gy (o ) < [ Ipfol) -~ ahi@ldx. @9)

This provides a lower bound on the TV distance based on wu,,.
In order to derive the upper bound we begin with

Drv(fo. f2) = / pfol(%) — gfi ()] dx (26a)
= / Ipfo(a0) — gfs ()| YRR HahX) \, (26b)

. pfo(x) + qfi(x)

_ /<pfo( x) — afi(x) >2dx
pfo(x) + qf1(x)
(26¢)
[ ()

\/ Up fO fl (26d)

By combining the inequalities in (25) and (26d) with the re-
lationship in (22), we see that we can bound the BER by

1 1 oues . 11

5_5\/“p(f0,f1)§63 ves < §_§up(f03f1)~ 27
APPENDIX C
PROOF OF THEOREM 3
By the geometric vs harmonic mean inequality,
fo(x)f1(x)
fo(x)1fi(x)P > —————"—. (28)
oA 2 DG+ ah(o)
It immediately follows that 4,(fo, f1) < [ fo(x)?f1(x

scaled Chernoff information functlon Thus

Jhos£0) < [ fal011: 07 (29)

APPENDIX D

PROOF OF THEOREM 4

For equiprobable classes (p =q= %) , the upper and lower
bounds on the Bayes error rate based on the Bhattacharyya dis-
tance are defined by [12]

1—+/1— fCQ(fo,fl) < (Bayes < W, (30)
where
Clh ) = [VERREE G
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To show that the uy bound upper bound is tighter than
the Bhatacharyya bound we must show that A L (fo,f1) <
BC(fo, f1). Itis clear that this is the case from Theorem 3. For
the uy lower bound to be tighter, BC?*(fy, f1) must be less
than or equal to A1 ( fo, f1). We show this to be true using the
Cauchy-Schwartz 1nequality'

BC*(fo, f1) = [/ V fo(x) fi(x } (32a)

|:/\/\/f</)07+f1\/ (fo(x) + f1(x))d } (32b)

ﬁl( ) 1(X7> ax 1 X))ax C
< | T + oy ] 2T (20

(
Ax(fo, fr)- (32d)

I\,h—l

Combining both bounds, we see that

%_% 1— BC?%*(fo, f1)
1 1
S 5 5 /u%(f(]afl)
< ePwes < % uy(fo, f1) < —BC‘(fO,f1)~

APPENDIX E

PROOF OF THEOREM 5
The proof'is similar to the result in [19] and the result in [23].

T(hayT) = ET(hayT) + ES(h7yS) - 6S(h’7y5)

+ es(h,yr) — es(h, yr) (33a)
<es(h,ys) + les(h,yr) — es(h, ys)l
+ ler(h, y1) — es(h, y1)| (33b)

< es(h,ys) + By, [lys(x) — yr(x)]]
i ' [ 7160 10 2 i

- [ 56060 ol ax] 330
<es(h,ys) +Efs x) [[¥s(x) — yr(x)|]
+ [ 10~ 569G - wr0lax (330)
<es(h,ys) +Efs [[ys(x) — yr(x)]]
+ 11260 - g5l i (33¢)

In (33e), we identify an upper bound on the target error ex-
pressed using the TV distance between source and target distri-
butions. Using (26d) this can be expressed in terms of u 1

er(h,yr) < es (b, ys(x)) + E{lys(x) — yr(x)/}

+2,fuy (. fs) (34
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