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Direct Estimation of Density Functionals Using
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Abstract—A number of fundamental quantities in statistical sig-
nal processing and information theory can be expressed as integral
functions of two probability density functions. Such quantities are
called density functionals as they map density functions onto the
real line. For example, information divergence functions measure
the dissimilarity between two probability density functions and
are useful in a number of applications. Typically, estimating these
quantities requires complete knowledge of the underlying distri-
bution followed by multidimensional integration. Existing methods
make parametric assumptions about the data distribution or use
nonparametric density estimation followed by high-dimensional
integration. In this paper, we propose a new alternative. We in-
troduce the concept of “data-driven basis functions”—functions of
distributions whose value we can estimate given only samples from
the underlying distributions without requiring distribution fitting
or direct integration. We derive a new data-driven complete basis
that is similar to the deterministic Bernstein polynomial basis and
develop two methods for performing basis expansions of function-
als of two distributions. We also show that the new basis set allows
us to approximate functions of distributions as closely as desired.
Finally, we evaluate the methodology by developing data-driven
estimators for the Kullback–Leibler divergences and the Hellinger
distance and by constructing empirical estimates of tight bounds
on the Bayes error rate.

Index Terms—Divergence estimation, direct estimation, nearest
neighbor graphs, Bernstein polynomial.

I. INTRODUCTION

INFORMATION divergence measures play a central role
in the fields of machine learning and information theory.

Information divergence functions, functionals that map density
functions to IR, have been used in many signal processing
applications involving classification [1], segmentation [2],
source separation [3], clustering [4], and other domains. In
machine learning, a sub-class of these divergences known as
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f -divergences [5], are widely used as surrogate loss functions
since they form convex upper bounds on the non-convex 0-1
loss [6].

Although these measures prove useful in a variety of applica-
tions, the task of estimating them from multivariate probability
distributions using finite sample data can pose a significant chal-
lenge. It is especially challenging for continuous distributions,
which is the focus of this paper. For algorithms and theory for
estimating information measures for discrete distributions the
reader is referred to [7]–[12]. For the continuous case treated
here, there are three general classes of methods for estimat-
ing divergence [13]: 1) parametric methods, 2) non-parametric
methods based on density estimation, and 3) non-parametric
methods based on direct (or graph-based) estimation. Paramet-
ric methods are the most common choice for estimation, and
typically offer good convergence rates (1/N ) when an accu-
rate parametric model is selected. The fundamental limitation
of parametric methods, is that an accurate parametric model is
rarely available in real world problems and using an inaccurate
parametric model can heavily bias the final estimate. As an al-
ternative, when no parametric form is known, non-parametric
density estimates such as kernel density estimation [14], his-
togram estimation [15], or k-nearest neighbor (k-NN) density
estimation [16] are used to characterize the distribution. While
these methods are quite powerful in certain scenarios, they are
generally high variance, sensitive to outliers, and scale poorly
with dimension [13].

An alternative to these two classes of methods is direct
(or graph-based) estimation, which exploits the asymptotic
properties of minimal graphs in order to directly estimate
distribution functionals without ever estimating the underlying
distributions themselves. These methods have been used to
estimate density functionals such as entropy [17]–[19], the
information divergence [13], and the Dp -divergence [20]. This
class of methods can have faster asymptotic convergence rates
[13] and are often simpler to implement than plug-in methods
which may have many tuning parameters such as kernel width
or histogram bin size. Direct estimators are often inspired by an
asymptotic property of a graph-theoretic quantity that can be
scaled or modified in order to generate an estimator for a given
information-theoretic measure. This approach is customized to a
specific form of the density functional and is sometimes difficult
to generalize. The estimator for the Dp divergence is an example
of this approach [20]. This is in contrast with plug-in estimators,
where the same general approach can be used to estimate any
distribution functional. Estimators based on influence functions
attempt to bridge the gap between the two types of approaches
[21]. In that work the authors present a recipe for estimating
any smooth functional by using a Von Mises expansion - the
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analog of the Taylor expansion for distributions; however that
approach still requires that part of the data be used for density
estimation.

In this paper, we provide a general approach for estimating
a wide range of distribution functionals. We propose decom-
posing the functional onto a complete set of “data-driven” basis
functions; where the term “data-driven” means that the basis is
determined directly from the data and does not involve distribu-
tion fitting or direct integration. We show that a broad class of
distribution functionals can be approximated as closely as de-
sired through linear combinations of our proposed basis, where
the weights of the basis expansion are determined through con-
vex optimization. Our approach offers a powerful alternative for
estimating information-theoretic distribution functionals. We
demonstrate the flexibility of the approach by constructing em-
pirical estimators of bounds on the Bayes error rate using the
same basis set.

The remainder of the paper is organized as follows. In the
next section, we review the literature in this area. In Section II
we provide a detailed description of the problem this paper at-
tempts to solve and establish some of the basic mathematical
notation used throughout this paper. In Section III we introduce
a set of graph-theoretic basis functions and prove that a wide
range of information theoretic quantities can be represented by a
linear combination of functions in this set. In Sections IV and V,
we explore the limitations of the proposed methodology in the
finite sample regime and propose two alternate fitting routines
to identify weights to map these basis functions to quantities
of interest. In Section VI we empirically investigate how the
proposed method can be used to estimate popular divergence
measures (the KL-divergence, the Hellinger distance, the Dp -
divergence), and we compare its performance to various para-
metric and non-parametric alternatives. In Section VII, we show
how the method can be extended to form tighter bounds on the
Bayes error rate for binary classification problems. Section VIII
offers some concluding remarks.

A. Related Work

A natural method for non-parametric estimation of contin-
uous distribution functionals involves histogram binning fol-
lowed by plug-in estimation [22], [23]. When the bin-size is
adjusted as a function of the number of available samples per
bin, this histogram plug-in method is known as Grenander’s
method of sieves and it enjoys attractive non-parametric con-
vergence rates [24], [25]. While these methods may work well
for small data dimension (d = 1, 2), their complexity becomes
prohibitive for larger dimensions. Recent work has focused on
non-parametric plug-in estimators that are more practical in
higher dimensions. These approaches generally only estimate
the PDF for the values of samples in the reference data, then
calculate the expected value across the sample data in place of
numerical integration [26]–[28]. To circumvent the slow con-
vergence associated with these approaches, ensemble methods
[27] and methods based on influence functions [21] have been
proposed which are capable of achieving the parametric rate
O(N−1) MSE convergence if the underlying densities meet
certain smoothness conditions [27]. Alternatively, estimates of
divergence functions that rely on estimates of the likelihood
ratio instead of density estimation have been proposed for

estimating the α-divergence and the L2-divergence [6], [29]–
[32]. These methods estimate the likelihood ratio of the two
density functions and plug that value into the divergence func-
tions. Other approaches that bypass density estimation are the
convex optimization approach of [29] to estimate f -divergences
and the k-NN graph and minimal spanning tree approaches to
estimating Henze-Penrose divergence [20], [33], [34].

Similarly, the approach we propose in this paper bypasses
density estimation through a polynomial basis expansion where
the basis coefficients are determined through a convex opti-
mization criterion. This provides added flexibility and allows us
to easily estimate a large class of distribution functionals and
to establish empirical estimates of bounds on the Bayes error
rate. Conceptually, this approach is similar to prior work in es-
timating the entropy of discrete distributions using polynomial
approximations [7]–[9], [11].

Bounds on optimal performance are a key component in
the statistical signal processing literature. For classification
problems, it is often desirable to bound the Bayes error
rate (BER) - the minimum achievable error in classification
problems. The well-known Chernoff upper bound on the
probability of error has been used in a number of statistical
signal processing applications [35]. It motivated the Chernoff
α-divergence [13]. The Bhattacharyya distance, a special case
of the Chernoff α-divergence for α = 1

2 , upper and lower
bounds the BER [36], [37]. Beyond the bounds on the BER
based on divergence measures, a number of other bounds
exist based on other functionals of the distributions [38],
[39]. For estimation problems, the Fisher information matrix
(FIM) bounds the variance of the optimal unbiased estimator
(through it’s relationship with the CRLB). The authors have
also previously introduced the Dp divergence, a non-parametric
f -divergence, and showed that it provides provably tighter
bounds on the BER than the BC bound [20]. They extended
this work to estimation of the Fisher information in [40].

Our data-driven basis, consisting of Bernstein polynomials,
can be used to estimate functionals of distributions and to esti-
mate bounds on Bayes optimal classification performance. Bern-
stein polynomials of a different form have been used for density
estimation [41]–[46]. In contrast to this work, our methods do
not rely on density estimation.

II. PROBLEM SETUP

In this section, we will set up the problem and establish the
notation that will be used throughout the rest of the paper. We
are given a set of data [X,y] containing N instances, where
each instance is represented by a d-dimensional feature vector
xi and a binary label yi . Suppose that this data is sampled from
underlying distribution, fx(x), where

fx(x) = p0f0(x) + p1f1(x) (1)

is made up of the two conditional class distributions f0(x) and
f1(x) for classes 0 and 1, with prior probabilities p0 and p1
respectively. If the priors aren’t explicitly known, they can be
easily estimated from the sample data by measuring the ratio
of samples drawn from each class. As a simple application of
Bayes theorem, we can define the posterior likelihood of class

Authorized licensed use limited to: ASU Library. Downloaded on March 29,2020 at 00:11:52 UTC from IEEE Xplore.  Restrictions apply. 



560 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 66, NO. 3, FEBRUARY 1, 2018

1, η(x), evaluated at a point x = x∗, as

η(x∗) = P [y = 1|x = x∗] =
P [y = 1]fx(x∗|y = 1)

fx(x∗)

=
p1f1(x∗)
fx(x∗)

=
p1f1(x∗)

p0f0(x∗) + p1f1(x∗)
(2)

We can similarly define the posterior probability for class 0 as

P [y = 0|x = x∗] =
p0f0(x∗)

p0f0(x∗) + p1f1(x∗)
, (3)

and since y is binary,

P [y = 0|x = x∗] = 1 − η(x∗). (4)

To simplify the notation, we remove the dependence of η on x∗
from portions of the analysis that follow.

Suppose that we wish to estimate some functional G(f0 , f1)
of distributions f0(x) and f1(x), which can be expressed in the
following form

G(f0 , f1) =
∫

g(η(x))fx(x)dx. (5)

Throughout the rest of this paper, we will refer to the g(η) in (5)
as the posterior mapping function. Many functionals in machine
learning and information theory, such as f -divergences and loss
functions, can be expressed this way. Consider the family of
f -divergences as an example. They are defined as

Dφ(f0 , f1) =
∫

φ

(
f0(x)
f1(x)

)
f1(x)dx, (6)

where φ(t) is a convex or concave function unique to the given
f -divergence. By substituting

f0(x)
f1(x)

=
p1(1 − η(x))

p0η(x)
(7)

and

f1(x) =
η(x)
p1

fx(x) (8)

we can redefine (6) as

Dφ(f0 , f1) =
∫

φ

(
p1(1 − η(x))

p0η(x)

)
η(x)
p1

fx(x)dx. (9)

Thus any f -divergence can be presented in the form outlined in
(5) simply by defining the posterior mapping function g(η) as

g(η) =
η

p1
φ

(
p1(1 − η)

p0η

)
. (10)

We propose a procedure for estimating these types of divergence
functionals which bypasses density estimation. We do this by
representing the functional in terms of the asymptotic limit of a
linear combination of graph-theoretic basis functions.

Suppose that there exists a set of basis functions
H0(η), ...,Hk (η) that can be similarly expressed as

Hi(f0 , f1) =
∫

hi(η(x))fx(x)dx. (11)

Fig. 1. Illustration of two neighborhoods of x∗ for k = 4 and k = 8, instances
with y = 0 are blue while instances with y = 1 are red. In the first scenario
Φ4 (x∗) = 1, since only one instance in N4 (x∗) is red. In the second scenario
Φ8 (x∗) = 3, since three of the eight instance in N8 (x∗) are red.

If we assume that there exists a set of coefficients such that

g(η) ≈
k∑

i=0

wihi(η), (12)

then consequently

G(f0 , f1) ≈ Ĝ(f0 , f1) =
k∑

i=0

wiHi(η), (13)

where the sense of approximation is that the �2 norm of the
difference between the right and left hand sides is small. In the
following section, we will introduce a set of basis functions that
have the desired properties.

III. GRAPH-THEORETIC BASIS FUNCTIONS

Consider the dataset [X,y] previously defined. Suppose
we select an arbitrary instance x∗ from X and exam-
ine it along with the set of its k − 1 nearest neighbors
x1

N N ,x2
N N , ...,xk−1

N N in X. We can define the neighborhood
set Nk (x∗) = [x∗,x1

N N , ...,xk−1
N N ], as the union of x∗ and its

k − 1 nearest neighbors. Using this we define Φk (x∗) as the
number of instances in the neighborhood set which are drawn
from class 1, or alternatively, the sum of y across all points in
the neighborhood

Φk (x∗) =
∑

i:x i ∈Nk (x∗)

yi. (14)

Fig. 1 provides a simple illustration to help explain how
Φk (x∗) is calculated. Calculating Φk is similar to how near-
est neighbor classifiers make decisions, but with two important
differences:

1) The base instance x∗ is considered in the neighborhood
indistinguishably from other instances in Nk (x∗).

2) Where traditional k-NN classifiers are concerned only
with identifying the majority, we are interested in the
exact number of instances drawn from each class.

In essence Φk (x∗) tells us something about the probability that
y = 1 for instances on or near x∗. Since we are more concerned
with the dataset as a whole than the local characteristics in x,
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we define the statistic ρr,k,N (X) to be the fraction of instances
x ∈ X, for which Φk (x) = r, r ≤ k. If we define the indicator
function Ir,k (x) as

Ir,k (x) =
{

1 Φk (x) = r

0 otherwise,
(15)

then this test statistic ρr,k,N (X) can be represented by

ρr,k,N (X) =
1
N

∑
x ∈X

Ir,k (x). (16)

The function ρr,k,N (X) is simply the proportion of k-NN neigh-
borhoods that contain exactly r points from class y = 1. This
statistic has a number of desirable qualities. We show that this
statistic asymptotically converges to a function of the underly-
ing distributions that can be described in the form outlined in
(5). The following is proven in Appendix A.

Theorem 1: As the number of samples (N ) approaches
infinity,

lim
N →∞

ρr,k,N (X) L2→
∫ (

k

r

)
ηr (x)(1 − η(x))k−r fx(x)dx

whenever k/N → 0.
We propose to use the asymptotic form of ρr,k,N (X) defined

in Theorem 1 as a basis function for estimating functionals of
the form (5),

Hr,k (f0 , f1) = lim
N →∞

ρr,k,N (X) =
∫

hr,k (η(x))fx(x)dx

(17)

where

hr,k (η) =
(

k

r

)
ηr (1 − η)k−r . (18)

The function (18) is the rth Bernstein basis polynomial of de-
gree k [47]. Bernstein’s proof of the Weierstrass Approximation
Theorem [48] asserts that any continuous function g(η) can be
uniformly approximated on η ∈ [0, 1] to any desired accuracy
by a linear combination of functions in (18) of the form

g(η) ≈
k∑

r=0

g
( r

k

)
hr,k (η). (19)

Combining this result with Theorem 1, we can show that a
linear combination of this basis can be used to estimate any
function of the form (5).

Theorem 2: For any G(f0 , f1) that can be expressed in the
form

G(f0 , f1) =
∫

g(η(x))fx(x)dx,

where g(η) is continuous on [0, 1], the approximation

Ĝk,N (X) =
k∑

r=0

g
( r

k

)
ρr,k,N (X) (20)

satisfies

lim
k→∞

lim
N →∞

k/N →0

E

[(
Ĝk,N (X) − G(f0 , f1)

)2
]

= 0. (21)

Theorem 2 provides an asymptotically consistent method
of estimating a variety of information-theoretic functions that
makes no assumptions on the underlying distributions and can
be calculated without having to perform density estimation.
Throughout the rest of the paper we will refer to the weights
g(r/k) in the approximation specified by (20) in Theorem 2 as
the Bernstein weights. We next turn to the finite sample proper-
ties of the estimator ρr,k,N (X).

IV. FINITE SAMPLE CONSIDERATIONS

The previous Section investigated the asymptotic properties
of linear combinations of the proposed set of empirically es-
timable basis functions. The asymptotic consistency of the pro-
posed method is valuable, however in real world scenarios, data
is inherently a finite resource, and as a result the efficacy of
this method is heavily dependent on its convergence character-
istics in the finite sample regime. In this section, we will take
a detailed look into how restricting both N and k affects our
ability to estimate functions of two distributions. To do this, it
is necessary to first break down the different sources of error in
the proposed methodology.

A. Estimation vs. Approximation Error

The goal of this paper is to empirically estimate the functional
G(f0 , f1) of the two underlying distributions f0(x) and f1(x)
using a linear combination of directly estimable basis functions

Ĝk,N (X) =
k∑

r=0

wrĤr,k,N (X). (22)

We divide the error of this estimate into two types, the approxi-
mation error (eA ) and the estimation error (eest):

eT = G(f0 , f1) − Ĝk,N (X)

= G(f0 , f1) − Ĝk (f0 , f1)︸ ︷︷ ︸
=:eA

+ Ĝk (f0 , f1) − Ĝk,N (X)︸ ︷︷ ︸
=:ee s t

.

(23)

This allows us to separate the error in estimating the basis func-
tions from error in fitting to the posterior mapping function.
Understanding the trade-off between these two error types will
be particularly useful in Section V, where we explore different
methods of fitting weights to the desired density functionals.

B. Considerations for Finite k

A finite sample also implies a finite k and impacts the approx-
imation error. Let us consider the Bernstein weighting scheme
introduced in (20) for the scenario where the size of the basis
set (k) is restricted. Consider the following example problem.

Example: Suppose that we wish to estimate the function

g(η) =
(

3
1

)
η(1 − η)2 (24)

using the basis set β0,3(η), β1,3(η), β2,3(η), β3,3(η). Because
g(η) = β1,3(η), there exists a set of weights such that

3∑
r=0

wrβr,3(η) = g(η), (25)
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Fig. 2. Plot of true and estimated basis values vs. r for data drawn from underlying distributions f0 (x) ∼ N (03 , I3 ) and f1 (x) ∼ N ( 1√
3
13 , I3 ).

however, using the Bernstein weighting scheme in (20) yields

ĝ(η) =
3∑

r=0

g
(r

3

)
βr,3(η)

= g
(0

3

)
β0,3(η) + g

(1
3

)
β1,3(η) + g

(2
3

)
β2,3(η)

+ g
(3

3

)
β3,3(η)

=
4
3
η(1 − η)2 +

2
3
η2(1 − η)


= g(η). (26)

It is clear from this example that the Bernstein weighting pro-
cedure do not always provide ideal weights when k is restricted.
Based on these results, we are motivated to explore alternative
weighting procedures in order to improve the performance of
this method for the finite sample case. In the following Sec-
tion, we will introduce a method of finding better weights using
convex optimization.

Regardless of how weights are assigned to the approxima-
tion, selection of k remains an important factor affecting perfor-
mance. In order to satisfy Theorem 2, k should be functionally
dependent on N , such that N approaches infinity, both k → ∞
and k

N → 0, however this still provides a great degree of free-
dom in the selection of k.

In general, there are two major competing factors that must
be considered when selecting k. The first is that the Weierstrass
approximation theorem can exactly represent any posterior map-
ping function g(η) as a linear combination of the proposed basis
set only as k → ∞. This provides motivation for choosing a
large k-value to ensure the best possible fit of g(η). The sec-
ond factor is that the asymptotic characteristics of ρr,k,N (X)
are dependent on all points in Nk (x∗). Moreover the regime
for which Theorem 2 holds, requires that k

N → 0, so we are
motivated to select k such that N � k. This means that the se-
lection of k must achieve a compromise in the trade-off between
the approximation and estimation errors, since larger values of
k will increase the amount of finite sample error made in esti-
mating the individual basis functions, while lower values of k

may inhibit our ability to accurately model the desired function
in the asymptotic regime.

To illustrate how our ability to estimate the desired set of
basis functions varies with k, we calculate the estimated and
asymptotic values of ρr,k,N (X) for k = 10 and k = 100 on
data drawn from distributions f0(x) ∼ N (03 , I3) and f1(x) ∼
N ( 1√

3
13 , I3), where 03 = [0 0 0] and 13 = [1 1 1], and

plot the results in Fig. 2. Estimates are calculated at 3 different
sample sizes (N0 = N1 = 100, 1000, 10000) and each estimate
shown in Fig. 2 has been averaged across 500 Monte Carlo trials.
While we can estimate the basis set for either k-value with a
high degree of accuracy given enough samples, the estimates
for k = 10 are noticeably more accurate. In fact, we are able to
do about as well with 1000 samples for k = 10 as we are with
10000 samples for k = 100.

V. OPTIMIZATION CRITERIA FOR FITTING

DENSITY FUNCTIONALS

In this section, we propose a convex optimization criterion
to identify appropriate weights for fitting information-theoretic
functions when k and N are restricted. Inherently, our goal is to
minimize the total error, defined in (23), however minimizing
this quantity directly isn’t feasible since the value of G(f0 , f1) is
unknown. To circumvent this challenge we focus on developing
a criterion to minimize the approximation error. We initially
develop an optimization criterion that assumes the posterior is
uniformly distributed, then propose an alternate method which
incorporates an estimate of the posterior density function in
order to more accurately model the approximation error.

A. Uniform Optimization Criteria

Recall that the approximation error eA can be represented as

eA =
∫

ε(η(x))fx(x)dx, (27)

where

ε(η) = g(η) −
k∑

r=0

wrhr,k (η). (28)

Since solving (27) requires high-dimensional integration and
knowledge of the underlying distributions. However, because η
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is a function of x, ε(η) is implicitly a function of x as well, and
by the law of the unconscious statistician [49],

eA = E[ε(η)] =
∫

ε(η)fη (η)dη, (29)

where fη (η) is the probability density function of the random
variable η. Rewriting the error in this form simplifies the region
of integration to a well defined space (since η ∈ [0, 1]) and
circumvents the high dimensionality of x. While this eliminates
some of the challenges in calculating the error it also creates
new ones stemming from the fact that fη (η) is unknown and
difficult to estimate due to its implicit dependency on f0(x) and
f1(x). The task of estimating fη (η) will be explored in detail
in Section V-B, however for the time being we will bypass this
challenge and simply attempt to minimize

e∗A =
∫

|ε(η)|2dη. (30)

It is worth noting that if fη (η) is uniformly distributed

e∗A = E
[|ε(η)|2] ≥ e2

A . (31)

While there exists an analytical solution for identifying the
weights which minimize (30) [50], we use a convex optimiza-
tion procedure that allows us to also account for the estima-
tion error. If we define a discretized set of posterior values
η̃ = [η̃1 , η̃2 , ..., η̃Ñ ], where 0 ≤ η̃1 < η̃2 < ... < ηÑ ≤ 1, a pro-
cedure to identify weights that minimize (30) can be defined as

w0 , ..., wk = argmin
w 0 ,...,wk

1
Ñ

Ñ∑
i=1

∣∣∣g(η̃i) −
k∑

r=0

wrhr,k (η̃i)
∣∣∣2 . (32)

To illustrate the effectiveness of this method, we consider the
example problem of trying to estimate the Hellinger distance
(a problem we will further explore in Section VI). If we as-
sume both classes have equal prior probability (p0 = p1 = 0.5),
then the posterior mapping function for the squared Hellinger
distance is

g(η) = (
√

η −
√

1 − η)2 . (33)

This function is estimated using this convex weighting proce-
dure as well as the previously described Bernstein weighting
procedure, and we compare how well each method models the
desired function for values of k varying from 0 to 100. The per-
formances of each method is evaluated by the following formula

MSE(ĝ, g) =
Ñ∑

i=1

∣∣∣g(η̃i) − ĝ(η̃i)
∣∣∣2 , (34)

and the results are presented in Fig. 3 for a range of k val-
ues varying from 1 to 100. This experiment shows that the
proposed convex fitting procedure is able to approximate the
Hellinger posterior mapping function far more accurately than
the Bernstein approximation. This improvement isn’t surpris-
ing since the proposed method directly minimizes the MSE
whereas the Bernstein approximation guarantees consistency
only as k → ∞, but it still helps to illustrate the potential for
improvement in the Bernstein weights that exists for smaller k.

The expression (34) does not take into account finite sam-
ple errors that lead to noisy estimates of the basis func-
tions and thus does not directly reflect our ability to estimate
G(f0 , f1) with a finite sample. The consequences of this could

Fig. 3. Approximation error of each fitting procedure as a function of the
number of basis elements k. This is the idealized case where the basis estimation
error is zero and the total error is solely due to imperfect approximation of the
posterior mapping function g(η).

be quite significant. When using a similar approach for en-
tropy estimation, Paninski observed that the good approximation
properties were a result of “large oscillating coefficients” which
magnify the variance of the corresponding estimator [11]. Addi-
tionally, it does not account for the possibility that η is distributed
non-uniformly.

To empirically examine the finite sample properties of the two
approaches, we repeat the previous experiment, this time esti-
mating the basis functions empirically on samples of data drawn
from distributions f0(x) ∼ N (03 , I3) and f1(x) ∼ N ( 13√

3
, I3).

We generate N = 1000 samples (500 samples per class) in each
of the 500 iterations of a Monte Carlo simulation, and evaluate
the MSE as

MSE(G, Ĝ) =
1

NM C

NM C∑
i=1

[
G(f0 , f1) − Ĝ(f0 , f1)

]2
, (35)

where NM C represents the number of Monte Carlo iterations.
Since we know that the estimation error is scaled by the magni-
tude of the weights, we also evaluate a modified fitting routine
which augments (32) with a regularization term to penalize so-
lutions with large weights,

w0 , ..., wk =

argmin
w 0 ,...,wk

1
Ñ

Ñ∑
i=1

∣∣∣g(η̃i) −
k∑

r=0

wrhr,k (η̃i)
∣∣∣2 +

λ

k

k∑
r=0

w2
r , (36)

where λ represents a tuning parameter which controls the im-
portance assigned to minimization of the approximation error
relative to the estimation error. Intuitively, higher λ values will
make sense for smaller data sets to control the variance of the
estimator. We set λ = 0.01 for all experiments conducted in
this paper. The results of this experiment are shown in Fig. 4.
We immediately see the necessity of the regularization term, as
without it the error becomes extremely large for a range of k
values. More generally, the inclusion of the regularization term
improves the performance at every k value in this experiment.
In comparing the Bernstein weights with the convex (regular-
ized) weights, we find that 1) the performance of the convex
method is less dependent on the selection of k and 2) the convex
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Fig. 4. The total error of each fitting procedure as a function of k, when there
is both approximation and estimation error.

weights generally perform better at lower values of k, while
the Bernstein weights outperform at higher k. While the peak
performance of the Bernstein method is higher than the convex
method, there exists no good method of selecting k a priori in
order to reliably achieve this performance. In contrast, the con-
vex method with regularization is less sensitive to the value of
k selected.

B. Density-Weighted Optimization Criteria

In the optimization criteria introduced in the previous section
we implicitly make the assumption that the distribution of the
random variable η(x) ∼ fη (η) is uniformly distributed. In this
section we will investigate a data-driven estimator for fη (η).
However, before we proceed it is important to clarify what this
distribution actually is.

We initially introduced η as the posterior likelihood function
for class 1, which we showed in (2) can be represented as a
function of the underlying distributions. When this function’s
input is a known point x∗, η(x∗) represents the probability that
y = 1 given that x = x∗. However, if the input is a random
variable x, then η is also a random variable, which is distributed
according to fη (η).

Fig. 5 illustrates fη (η) for two univariate normal distributions
f0(x) ∼ N(0, 1) and f1(x) ∼ N(1, 1). Fig. 5 a displays the two
class distributions across x, Fig. 5(b) displays η(x) as a function
of x, and Fig. 5 c displays fη (η) as a function of η. We see from
this illustration that while, η(x) is close to 0 or 1 across most of
the region of x that is displayed, η(x) remains close to 0.5 in the
regions where fx(x) is greatest. As a results fη (η) is roughly
bell-shaped, and the likelihood of η existing at the extremities
(close to 0 or 1) is relatively low. Because the probability density
in these regions is low, the accuracy of our fit in these regions
is less important, and can be given less weight in the fitting
routine. Fig. 6 repeats this illustration for two well seperated
normal distributions. In this case the distribution of η is such
that fη (η) is most dense towards the extremities, and therefore
they should be given more weight in the fitting routine. Side by
side, these two figures present an interesting contrast. Despite
the fact that the set of density functions f0 and f1 look quite
similar in the two scenarios, the minor difference in separation
significantly alters the distribution of η.

In practice the underlying distributions f0 and f1 are un-
known, and as a result, fη (η) is unknown as well. However, if
we were able to sample fη (η) at η = η̃i , a more direct method
of minimizing eT would be to solve

w0 , ..., wk =

argmin
w 0 ,...,wk

Ñ∑
i=1

∣∣∣g(η̃i) −
k∑

r=0

wrhr,k (η̃i)
∣∣∣2 f̂η (η̃i)Δη̃ +

λ

k

k∑
r=0

w2
r ,

(37)

where Δη̃ = η̃i+1 − η̃i .
Below we show that ρr,k,N (X), the statistic previously de-

fined in Theorem 1 can be used to sample the PDF of η. This
result is stated in Theorem 3.

Theorem 3: As N → ∞ and k → ∞ in a linked manner such
that k

N → 0 and r
k → η∗

kρr,k,N (X) → fη (η∗).

Theorem 3 is useful as it provides a method of sampling
fη (η) that doesn’t depend on estimates of the underlying density
functions f0 and f1 . Using this result, we can estimate the
density of the posterior at point η̃i as

f̂η (η̃i) = k̃iρr̃i ,k̃ i ,N
(X) (38)

where r̃i and k̃i are integers selected such that η̃i = r̃ i

k̃ i
for

i = 1, 2, ..., Ñ . Sampling at exactly η̃i may not always be possi-
ble since the maximum value of k is limited by the sample size,
and k determines the resolution of the sampling scheme. Even if
it is possible, it may not be desirable to recalculate ρr̃i ,k̃ i ,N

(X)
for different values of ki because of the computational burden.
To overcome these problems we can design our approach such
that we utilize the same set of test statistics ρr,k,N (X) in the
estimation of the posterior distribution as are used in the esti-
mation of the basis set. One way to do this is to assign the set
of discretized posteriors

η̃ = [0,
1
k

,
2
k

, ..., 1] (39)

so that it is straightforward to calculate f̂η (η) from the known
values of ρr,k,N (X). An alternate approach is to leave η̃ un-
changed and interpolate f̂η (η) to determine its value at the de-
sired points. The advantage of this approach is that it doesn’t
constrain how η is sampled. Throughout the rest of this paper,
we will employ the latter method and solve for f̂η (η) by linearly
interpolating between its values on the discretized set (39).

Because this density-weighted fitting routine more directly
minimizes the approximation error of the final estimate, we ex-
pect it to generally outperform the uniform method, particularly
in cases where the density of the posterior is highly non-uniform
and where the desired posterior mapping function g(η) is diffi-
cult to model using the proposed basis set. This hypothesis will
be verified in Sections VI and VII, when we empirically evaluate
our methods with real data. This improvement comes at a com-
putational cost since the weights are now data-dependent, they
must be calculated online, whereas for the uniform method they
can be calculated offline and stored. Solving for the k weights
can be be implemented with O(k3) time complexity [51].
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Fig. 5. Illustration of the posterior distribution for two close univariate normal distributions.

Fig. 6. Illustration of the posterior distribution for two separated univariate normal distributions.

Current state-of-the-art algorithms for k-NN graphs can be im-
plemented with O(N log N) time complexity [52]. As a result
the complexity for the Convex (uniform) method isO(N log N)
assuming that the weights are available. The complexity for the
Convex (density weighted) method is O(k(N)3 + N log N)
since the weights must be determined for each new dataset.

VI. DIVERGENCE ESTIMATION

In this section, we show how the proposed method can be ap-
plied to estimating three f -divergences, the Hellinger distance,
the KL-divergence, and the Dp -divergence, directly from data.

A. Hellinger Distance

The Hellinger distance squared is an f -divergence used to
quantify the dissimilarity between two probability distributions
and is calculated by

H2(f0 , f1) =
1
2

∫ (√
f0(x) −

√
f1(x)

)2
dx. (40)

Using the approach proposed in Section V, we can estimate
H2(f0 , f1) by fitting weights to the posterior mapping function

gH (η) =
1
2

(√
η

p1
−
√

1 − η

p0

)2

. (41)

To evaluate the efficacy of this method, we conduct four differ-
ent experiments in which we attempt to estimate the Hellinger
distance between two distributions from finite sample data.
In the first three experiments, both distributions are normally

distributed according to f(x) ∼ N(μ1d ,Σd), where

Σd =

⎡
⎢⎢⎢⎣

σ1,1 σ1,2 . . . σ1,d

σ2,1 σ2,2 . . . σ2,d

...
...

. . .
...

σd,1 σd,2 . . . σd,d

⎤
⎥⎥⎥⎦ , (42)

for σi,j = β|i−j |. The first experiment evaluates the most basic
case where both Gaussians have spherical covariance. The sec-
ond experiment considers the case where there exists a strong
fixed dependency between adjacent dimensions by using an el-
liptical covariance structure. The third experiment evaluates the
case where this dependency between adjacent dimensions is
now dependent on which class the data is drawn from. In the
fourth experiment, we return to linearly independent dimen-
sions and consider the case where one of the distributions isn’t
normally distributed, but instead uniformly distributed within a
d-dimensional hypercube

f(x) =

⎧⎨
⎩

1
(2β)d

x ∈ [μ − β, μ + β]d

0 otherwise.
(43)

A detailed description of the distribution types and parame-
ter setting used in each of the four experiments is presented
in Table I. In addition to using the proposed method, we also
estimate the Hellinger distance using two different plug-in es-
timators, one based on a parametric density estimator that as-
sumes the data is normally distributed and one based on a k-NN
density estimate of the underlying distributions. The proposed
method is implemented using λ = 0.01 and k = 10, while set-
ting η̃ = [0, 0.01, . . . , 1]. To calculate the k-NN estimate, we
use the universal divergence estimation approach described in
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TABLE I
EXPERIMENT OVERVIEW TABLE

[53] and implemented in the ITE toolbox [54]. This method
allows us to fix k = 10 and still achieve an asymptotically con-
sistent estimate of the divergence.

In each of the first three experiments, the parametric model
shows the highest rate of convergence as expected, although in
experiment two it is slightly outperformed at smaller sample
sizes by the proposed method. In the fourth experiment, when
the assumption of Gaussianity in f1 no longer holds, the para-
metric solution is significantly biased and as a result, is outper-
formed by both non-parametric methods at higher sample sizes
(N > 2000). Relative to the k-NN plug-in estimator, the pro-
posed method performs slightly worse in experiment 1, slightly
better in experiment 2 and significantly better in experiments 3
and 4, with the results being relatively consistent across the var-
ious sample sizes. The improvement in performance shown in
experiments 3 and 4 suggests that the proposed method offers the
greatest benefit when there exists differences in the shapes of the
two underlying distributions. Though the density-weighted pro-
cedure consistently outperformed the uniform method, the ob-
served improvement was relatively minor in these experiments.

B. Kullback Leibler Divergence

The Kullback Leibler (KL) divergence [55], also sometimes
referred to as the KL risk or relative entropy, is an asymmetric
measure of divergence between two probability density func-
tions. Using our regular notation the KL-divergence can be cal-
culated by

dK L (f0 ||f1) =
∫ ∞

−∞
f0(x) log

(
f0(x)
f1(x)

)
dx. (44)

While the KL-divergence has the same general purpose as the
Hellinger distance, that is to measure the dissimilarity between
two probability density functions, it also has several key differ-
ence. Firstly since the KL-divergence is asymmetric it doesn’t
technically qualify as a distance function and dK L (f0 ||f1)
isn’t necessarily equal to dK L (f1 ||f0). This also means that
dK L (f0 ||f1) and dK L (f1 ||f0) will have different posterior map-
ping functions. We can define the posterior mapping function
for dK L (f0 ||f1) as

g0
K L (η) =

1 − η

p0
log

(
p1(1 − η)

p0η

)
(45)

and the posterior mapping function for dK L (f1 ||f0) as

g1
K L (η) =

η

p1
log

(
p0η

p1(1 − η)

)
(46)

such that

dK L (fi ||f|i−1|) =
∫ ∞

−∞
gi

K L (η(x))(p0f0(x) + p1f1(x))dx.

(47)

It is worth noting that when p0 = p1 = 0.5

g1
K L (η) = g0

K L (1 − η) (48)

thus g1
K L (η) is a reflection of g0

K L (η). One challenge presented
in modeling the KL-divergence is that the posterior mapping
functions are difficult to model due to discontinuities at the end
points, since g0

K L (0) = ∞ and g0
K L (1) is undefined though

lim
η→1−

g0
K L (η) = 0. (49)

Due to their symmetry g1
K L has the same problem at the opposite

endpoints. To handle this we simply select our discretized set of
posteriors η̃1 , η̃2 , ..., η̃Ñ such that 0 < η̃1 < η̃2 < ... < ηÑ < 1.
For the experiments in this Section, we set

η̃1 , η̃2 , η̃3 , ..., η̃100 , η̃101 = ε, 0.01, 0.02, ..., 0.99, 1 − ε (50)

where ε = 10−4 . Using this modified set of discretized pos-
teriors, we repeat the set of four experiments described in
Section VI-A to evaluate the proposed methods ability to es-
timate the KL-divergence. The results of this experiment are
displayed in Fig. 8. Like the estimates of the Hellinger distance,
the parametric method generally yielded the best performance
in the first three experiments, but suffered from a large asymp-
totic bias in experiment 4. The proposed method once again
significantly outperformed the k-NN plug-in estimator in ex-
periments 3 and 4, however the results in experiments 1 and
2 are slightly more nuanced due to the significant difference
in performance between the two optimization criteria in these
trials. In both of these trials the density-weighted criteria signif-
icantly outperforms the uniform method at all sample sizes. In
experiment 1 the k-NN plug-in estimator outperforms the regu-
lar plug-in estimator at all sample sizes, but is outperformed by
the density-weighted method for N > 300. In experiment 2 the
k-NN plug-in estimator consistently outperforms both proposed
methods, however the improvement over the density-weighted
method is marginal.

C. Dp -Divergence

The Dp -divergence is an f -divergence defined by

Dp0 (f0 , f1)

=
1

4p0p1

[∫
(p0f0(x) − p1f1(x))2

p0f0(x) + p1f1(x)
dx − (p0 − p1)2

]
.

(51)

The Dp -divergence has the unique property of being directly es-
timable from data using minimum spanning trees [20]. Because
of this property, it has been used to form non-parametric esti-
mates of the Fisher information [40] as well as upper bounds on
the Bayes error rate in a range of classification problems [20],
[56]. The posterior mapping function for the Dp -divergence can
be defined as

gDp
(η) =

(2η − 1)2 − (2p0 − 1)2

4p0(1 − p0)
(52)
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Fig. 7. Plots of MSE vs. Sample size in estimating the Hellinger distance for the four different experiments outlined in Table I.

Fig. 8. Plots of MSE vs. Sample size in estimating the KL-divergence for the four different experiments outlined in Table I.

Fig. 9. Plots of MSE vs. Sample size in estimating the Dp -divergence for the four different experiments outlined in Table I.

which simplifies to (2η − 1)2 when p0 = p1 = 0.5. We once
again repeat the experiments described in Section VI-A to evalu-
ate the proposed methods ability to estimate the Dp -divergence.
This experiment provides the unique opportunity to compare
the proposed method to a more traditional direct estimation
procedure. The results of this experiment are displayed in
Fig. 9.

As in the previous experiments, the parametric estimate gen-
erally performed the best in the first three experiments, but
suffered from a large asymptotic bias in experiment 4. The pro-
posed methods perform better than the MST-based estimation
in experiments 1 and 2 but worse in experiments 3 and 4. The

relative performance of each method in this experiment was
largely consistent across the various sample sizes, though the
proposed method seems to be converging slightly faster than
the MST method in experiment 4 and could possibly exceed its
performance given enough samples. Unlike in the previous ex-
periments, we found no difference in performance between the
uniform optimization criteria and the density-weighted criteria
in this experiment. This is due to the fact that gDp

(η) is a poly-
nomial and can be perfectly represented by the proposed basis
set, even when k is truncated. Since we are able to achieve a so-
lution where ε(η) = 0 ∀η, the density weighting has no impact
on the final results.
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Fig. 10. The Bayes error rate along with the three considered upper bounds
displayed as a function of η.

VII. FITTING BOUNDS ON PERFORMANCE

The optimization criteria in the proposed fitting routines gives
us the ability to not only approximate information-theoretic
functions, but to bound them as well. This is especially useful
for forming bounds on the Bayes Error Rate (BER). The Bayes
error rate represents the optimal classification performance that
is achievable for a given pair of class distributions f0(x) and
f1(x) with prior probabilities p0 and p1 respectively and can be
calculated by

εBayes =
∫

p0 f0 (x)≤p1 f1 (x)

p0f0(x)dx +
∫

p1 f1 (x)≤p0 f0 (x)

p1f1(x)dx. (53)

In essence the BER measures the intrinsic difficulty of a par-
ticular classification problem based on the data. A thorough
understanding of the BER of a particular problem can help de-
sign optimal classifiers. Because of the challenges associated
with estimating the BER, much of the literature has focused on
generating bounds on the BER [20], [37], which are generally
formulated in terms of some measure of divergence between
the two class distributions. One such bound, the well-known
Bhattacharya bound, is given by [37]

1
2
− 1

2

√
1 − BC2(f0 , f1) ≤ εBayes ≤ 1

2
BC(f0 , f1), (54)

where

BC(f0 , f1) = 1 − H2(f0 , f1). (55)

While the Hellinger distance here can be estimated via any of
the methods discussed in Section VI-A, parametric estimates
are most common. Alternatively [20] introduced the bounds

1
2
− 1

2

√
D 1

2
(f0 , f1) ≤ εBayes ≤ 1

2
− 1

2
D 1

2
(f0 , f1) (56)

where

D 1
2
(f0 , f1) = 1 − 2

∫
f0(x)f1(x)

f0(x) + f1(x)
dx. (57)

These bounds have the advantage of being provably tighter than
the Bhattacharyya bounds [20]. Furthermore since D 1

2
repre-

sents a particular case of the Dp -divergence, which is estimable

directly from data, these bounds bypass the need for density esti-
mation much like the approaches proposed in this paper. While
these bounds are significantly tighter than the Bhattacharyya
bounds, they still leave room for improvement. Avi-Itzhak pro-
posed arbitrarily tight bounds on the BER in [39], however these
bounds require density estimation to be employed in practical
problems. In this section, we will use a modified version of the
previously described fitting routine in order to investigate how
tightly we are able to bound the BER using a linear combination
of directly estimable basis functions.

Using the fitting routine described in (36) to bound the BER,
requires that we define g(η) appropriately for estimation of the
BER, and constrain our fit such that

k∑
r=0

wrhr,k (η̃i) ≥ g(η̃i) ∀η̃i . (58)

We can express (53) as

εBayes =
∫

min
[
p0f0(x), p1f1(x)

]
dx

=
∫

min
[
1 − η(x), η(x)

]
fx(x)dx (59)

so g(η) = min
[
1 − η, η

]
. Incorporating these changes within

the regularized fitting routine described in (36) yields

w0 , ..., wk

= argmin
w 0 ,...,wk

1
Ñ

Ñ∑
i=1

∣∣∣g(η̃i) −
k∑

r=0

wrhr,k (η̃i)
∣∣∣2 +

λ

k

k∑
r=0

w2
r

subject to
k∑

r=0

wrhr,k (η̃i) ≥ g(η̃i) ∀η̃i . (60)

Fig. 10 compares the theoretical values of each of these
bounds as a function of η. These results indicate that the pro-
posed method offers much tighter theoretical bounds than the
other two methods, however this bound is based on the asymp-
totic properties of the proposed basis set and doesn’t consider
the limitations of a finite sample estimate.

We evaluate the finite-sample performance of this method
by calculating each of the described bounds across the four
experiments described in Table I. Fig. 11 displays the ground
truth value of the BER, along with the theoretical and esti-
mated values for each of the three bounds (Bhattacharyya, Dp ,
and convex) across sample sizes ranging from 100 to 10000.
The Bhattacharyya bound is calculated based on a paramet-
ric plug-in estimator which assumes both class distributions to
be normally distributed. The Dp bound is calculated from the
Friedman-Rafsky test statistic using the approach described in
[20]. Finally the convex bound is calculated as a linear com-
bination of the proposed directly estimable basis functions us-
ing weights optimized according to (60). The results of this
experiment are largely consistent across the four experiments,
the convex method yields the tightest bound, followed by the
Dp bound, and finally the Bhattacharyya bound. Except for
the Bhattacharyya bound in experiment 4, which is estimated
parametrically, all of the bounds appear to converge to their
asymptotic solution. While the convex bound generally offers
a slightly slower convergence rate than the other two solutions,
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Fig. 11. Plots of theoretical and estimate upper bounds on the BER as a function of sample size for the four different experiments outlined in Table I.

TABLE II
PARAMETERS FOR 2 8-DIMENSIONAL GAUSSIAN DATA SETS FOR WHICH THE

BAYES ERROR RATE IS KNOWN (FROM [57])

TABLE III
COMPARING UPPER BOUNDS ON THE BAYES ERROR RATE FOR THE

MULTIVARIATE GAUSSIANS DEFINED IN TABLE II

it remains tighter than the other two bounds across all sample
sizes.

In order to further validate this bound we repeat one of the
experiments conducted in [20] by evaluating the proposed bound
along with the Mahalanobis bound, the Bhattacharyya bound,
and the Dp bound on two 8-dimensional Gaussian data sets
described in [57]. The mean and standard deviations of f0 and f1
for the two data sets are described in Table II, and all dimensions
are independent. These data sets allow us to analyze the tightness
and validity of the bounds in a higher dimensional setting. For
this experiment the sample size was fixed at N = 1000 and
only the empirical value of each of the bounds was evaluated.
Table III displays the mean and standard deviation of each bound
calculated across 500 Monte Carlo iterations for each of the two
data sets. In both data sets the convex method provides the
tightest bounds on the BER.

VIII. CONCLUSION

This paper introduces a novel method for estimating density
functionals which utilizes a set of directly estimable basis func-
tions. The most appealing feature of the proposed method is
its flexibility. Where previous methods of direct estimation are
generally only applicable to a specific quantity, we show that the
basis set can be used to generate an asymptotically consistent

estimate of a broad class of density functionals, including all
f -divergences and the Bayes error rate. We validate these find-
ings by experimentally evaluating the proposed method’s ability
to estimate three different divergences (the KL-divergence, the
Hellinger distance, and the Dp -divergence) for four pairs of
multivariate probability density functions. The results reveal
that the proposed method performs competitively with other
non-parametric divergence estimation methods, and seems to
outperform them in cases where the data from the two distribu-
tions have different covariance structures or belong to different
families. Additionally we demonstrate how the method can be
modified to generate empirically-estimable bounds on the Bayes
error rate that are much tighter than existing bounds.

Future work could focus on studying the finite-sample prop-
erties of the basis set proposed in this paper, since this repre-
sents a major source of error for the proposed methodology.
An improved understanding of these properties could enable us
to refine the regularization term in our optimization criteria to
more accurately model each weights contribution to the estima-
tion error or to develop ensemble methods, like those in [26], for
estimating the individual basis functions. Another worthwhile
future direction would be on determining an orthogonal ver-
sion of the Bernstein basis expansion since this would simplify
solving for the weights of the expansion.

APPENDIX A
PROOF OF THEOREM 1

Aspects of this proof mirror the methods used to prove the
asymptotic convergence of the k-NN error rate in pages 62–70 of
[58], please consult this text for additional details. Construction
of this proof requires the introduction of an auxilary variable
u. We define the augmented data set [X,y,u], where X is as
defined previously, u is a set of i.i.d. random variables which
are uniformly distributed in [0, 1], and y is defined such that

yi =
{

1 ui ≤ η(xi)
0 otherwise.

(61)

Now, let us consider an arbitrary point x∗ in the support of
fx(x). For each instance xi , we can define an alternate label

y′
i =

{
1 ui ≤ η(x∗)
0 otherwise.

(62)

Unlike the real labels yi , these alternate labels y′
i have no de-

pendency on xi ; they depend only on the fixed point x∗. From
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these alternate labels we construct the alternate statistic

Φ′
k (x∗) =

∑
i:x i ∈Nk (x∗)

y′
i . (63)

Since Φ′
k (x∗) is simply the sum of k i.i.d. Bernoulli random

variables, we can express the probability that Φ′
k (x∗) = r as

P [Φ′
k (x) = r|x = x∗] =

(
k

r

)
ηr (x∗)(1 − η(x∗))k−r . (64)

We can upper bound the likelihood that Φ′
k (x∗) 
= Φk (x∗) by

P [Φ′
k (x∗) 
= Φk (x∗)] ≤

∑
i:x i ∈Nk (x∗)

P [yi 
= y′
i ]. (65)

Using the definitions of yi and y′
i above, (65) can be expressed

in terms of the difference between the posterior likelihood at x∗

vs. xi as

P [Φ′
k (x∗) 
= Φk (x∗)] ≤

∑
xi ∈Nk (x∗)

E
[|η(x∗) − η(xi)|

]
. (66)

Using Lemma 5.4 in [58], we can show that
∑

xi ∈Nk (x∗)

E
[|η(x∗) − η(xi)|

] → 0 (67)

as N → ∞ whenever k
N → 0. Combining (66) and (67)

P [Φ′
k (x∗) 
= Φk (x∗)] → 0 (68)

as N → ∞ whenever k
N → 0. Furthermore, since convergence

in probability implies convergence in distribution [59],

lim
N →∞

P [Φk (x∗) = r] = P [Φ′
k (x∗) = r]. (69)

Using (69), we can simplify the expectation of Ir,k (x) to

lim
N →∞

E[Ir,k (x)] = lim
N →∞

E[E[Ir,k (x)|x = x′]]

= E[P [Φ′
k (x) = r|x = x′]]

=
∫ (

k

r

)
η(x′)r (1 − η(x′))k−r fx(x′)dx′ = ρ∗ (70)

where x′ represents a random variable independent of all in-
stances xi and distributed according to fx(x′). Now, let us eval-
uate the expression

E
[
(ρr,k,N (X) − ρ∗)2] = E[(ρr,k,N (X))2 ]

− 2E[ρ∗ρr,k,N (X)] + E[(ρ∗)2 ]. (71)

Beginning with the first term in (71)

E[(ρr,k,N (X))2 ] = E

[
1

N 2

∑
x i ∈X

∑
xj ∈X

Ir,k (xi)Ir,k (xj )

]

=
1

N 2 E

[ ∑
x i ∈X

Ir,k (xi) +
1

N 2

∑∑
x i ,xj ∈X ;i 
=j

Ir,k (xi)Ir,k (xj )

]

=
1
N

E
[
Ir,k (xi)

]
+

N 2 − N

N 2 E
[
Ir,k (xi)Ir,k (xj )

]
(72)

Note that the random variables Ir,k (xi) and Ir,k (xj ) are con-
ditionally independent if B is true, where B = {xi ∈ X \
Nk (xj ) ∩ xj ∈ X \ Nk (xi)}. Since every instance in X \ xi

is equally likely to be in Nk (xi), we can bound the probability
of the complement of B by P [B̄] ≤ 2k/N . From this we know
that as N → ∞, P [B] → 1 and as a result

lim
N →∞

E
[
Ir,k (xi)Ir,k (xj )

]
= lim

N →∞
E
[
Ir,k (xi)

]
E
[
Ir,k (xj )

]

= (ρ∗)2 . (73)

Plugging this into (72) yields

lim
N →∞

E[(ρr,k,N (X))2 ] = lim
N →∞

1
N

ρ∗ +
N − 1

N
(ρ∗)2 . (74)

Similarly the second term simplifies to

lim
N →∞

E[ρr,k,N (X)ρ∗] = lim
N →∞

ρ∗E
[

1
N

∑
x i ∈X

Ir,k (xi)
]

= (ρ∗)2

(75)

and the third term clearly equals (ρ∗)2 . Substituting these results
into (71) yields

lim
N →∞

E
[
(ρr,k,N (X) − ρ∗)2] = lim

N →∞
1
N

ρ∗ +
N − 1

N
(ρ∗)2

− 2(ρ∗)2 + (ρ∗)2

= lim
N →∞

ρ∗ − (ρ∗)2

N
= 0. (76)

APPENDIX B
PROOF OF THEOREM 2

Starting with the expression

lim
k→∞

lim
N →∞

k/N →0

Ĝk,N (X) = lim
k→∞

lim
N →∞

k/N →0

k∑
r=0

g
( r

k

)
ρr,k,N (X)

(77)

we first evaluate the limit with respect to N . Since these condi-
tions mirror those of Theorem 1 and g(r/k) is independent of
N , we can rewrite (77) as

lim
k→∞

k∑
r=0

g
( r

k

)∫ (
k

r

)
ηr (1 − η)k−r fx(x)dx

=
∫ [

lim
k→∞

k∑
r=0

g

(
r

k

)(
k

r

)
ηr (1 − η)k−r

]
fx(x)dx, (78)

which according to Weierstrass’ Approximation Theorem sim-
plifies to

=
∫

g(η)fx(x)dx

= G(f0 , f1). (79)

Therefore

lim
k→∞

lim
N →∞

k/N →0

E

[(
Ĝk,N (X) − G(f0 , f1)

)2
]

= 0. (80)
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APPENDIX C
PROOF OF THEOREM 3

Starting with the augmented data set defined in Appendix IX,
remember that Φ′

k (x∗) is the sum of k i.i.d. Bernoulli random
variables. Therefore 1

k Φ′
k (x∗) represents the arithmetic mean of

these output values, and

lim
k→∞

1
k

Φ′
k (x∗) = lim

k→∞
1
k

∑
i:x i ∈Nk (x∗)

y′
i = η(x∗). (81)

Now, since Φ′
k (x) must be an integer, its probability of equaling

r can be expressed as

P [Φ′
k (x) = r] = P

[
r − 1 < Φ′

k (x) ≤ r

]
. (82)

Taking the limit of this expression w.r.t. k, allows us to use (81)
to form

lim
k→∞

P

[
r − 1 < Φ′

k (x) ≤ r

]
= lim

k→∞
P

[
r − 1

k
< η ≤ r

k

]

= lim
k→∞

Fη

( r

k

)
− Fη

(r − 1
k

)
.

(83)

Now if we multiply each side by k, the right hand side takes the
form of Newton’s difference quotient and can be simplified to
the probability density function

lim
k→∞

kP [Φ′
k (x) = r] = lim

k→∞
Fη ( r

k ) − Fη ( r
k − 1

k )
1
k

= lim
k→∞

d

dη
Fη

( r

k

)
= lim

k→∞
fη

( r

k

)
.

(84)

Since ρr,k,N → P [Φ′
k (x) = r] as N and k approach infinity in

a linked manner such that k/N → 0 and r
k → η∗

kρr,k,N (X) → fη (η∗). (85)
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