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ABSTRACT 

 

The positive and unlabeled learning problem is a semi-

supervised binary classification problem.  In PU learning, only 

an unknown percentage of positive samples are known, while 

the remaining samples, both positive and negative, are 

unknown. We wish to learn a decision boundary that separates 

the positive and negative data distributions. In this paper, we 

build on an existing popular probabilistic positive unlabeled 

learning algorithm and introduce a new modified logistic 

regression learner with a variable upper bound that we argue 
provides a better theoretical solution for this problem. We then 

apply this solution to both simulated data and to a simple image 

classification problem using the MNIST dataset with 

significantly improved results. 

Index Terms—PU learning, positive unlabeled learning, 

machine learning, AI, semi-supervised 

1. INTRODUCTION  

Classification is an important task in machine learning and 
signal processing. Image object identification, video activity 
categorization, and acoustic classification of audio signals are 
examples of signal processing classification problems. Text and 
document classification, fraud detection, and disease gene 
identification are other traditional machine learning 
classification problems.  

In the standard supervised classification problem, we are 
given a large quantity of training data samples 𝑥, each labeled 
with its associated binary class 𝑦 - typically positive (𝑦 = 1) or 
negative (𝑦 = 0). A classification algorithm learns a model 
𝑓(𝑥) from the features of these labeled training samples. Given 

a new sample with no label, this model then classifies that 
unlabeled sample as belonging to either the positive or negative 
class. Several algorithms are used for this problem, including 
logistic regression, support vector machines (SVMs), and 
Artificial Neural Networks (ANNs).  

In the real world, it is often quite difficult and/or expensive 
to gather sufficient quantities of labeled data for training. It has 
been shown that using additional cheap, unlabeled data in 
training classifiers can help solve this problem [1]. Partially 
supervised learning algorithms can make use of small sets of 
positive and negative labeled training data and large sets of 
unlabeled training data. Frequently, however, even a small set 
of negative training data is unavailable and learning from only 
positive and unlabeled samples becomes desirable. This is 
known as the Positive and Unlabeled learning problem (PU 
Learning). A simple illustration is given in Figure 1. Notice that 
only a small proportion of data samples are labeled. 

One application of the positive and unlabeled learning 
problem is image object classification and detection. Image 
object classification can be used to detect man-made structures 
in satellite images (such as sites of archeological or military 
interest), identify a particular make and model of vehicle in 
images of cars in a city or on a freeway, or to classify an image 
from a dashcam of an autonomous vehicle as something 
requiring an emergency stop such as a person, object, or large 
animal in the road. Additional applications are described in [2]. 

In this paper, we propose a probabilistic algorithm that uses 
a modified logistic regression to solve the positive unlabeled 
learning problem. This approach involves a modification to the 
benchmark algorithm for this problem proposed by Elkan and 
Noto in [3]. Additional solutions to this problem are discussed 
in [2] and [4]. We discuss the theoretical justification for the 
modification and apply the algorithm to simulated data and 
images from the MNIST image dataset. 

 
Figure 1: Illustration of the Positive and Unlabeled binary classification problem. 

 



  

2. ASSUMPTIONS 

Learning the overall percentage of positive samples 𝑝(𝑦 = 1), 
also known as the class prior, directly from positive and 
unlabeled data is an important problem, first identified in [5] and 
[6].  Without expert domain knowledge, it is impossible to know 
if we have well separated homogeneous positive and negative 
classes with a low probability that a positive sample is labeled, 
or poorly separated positive and negative classes with 
significant overlap and a high probability that a positive sample 
is labeled. Both scenarios can result in the same positive and 
unlabeled set. This is illustrated in Figure 2.  Notice that in both 
cases, the labeled and unlabeled data samples are completely 
overlapping and non-separable as illustrated in Figure 1b. This 
leads us to two important and necessary assumptions. 
 First, we make the implicit and necessary assumption that 
the region of highest density of labeled positive samples must 
consist entirely of positive samples—i.e. that it is homogeneous 
as shown in Figure 2. Where the density of known positive 
samples decreases, we conclude the overlap of positive and 
negative distributions.  This is sometimes called the partial 
separability or positive subdomain assumption [4]. 
 Second, we explicitly assume that our positive labeled 
samples are "selected completely at random" from the set of all 
positive samples. This is the SCAR assumption, first described 
in [3], and it is necessary if we are to draw reasonably accurate 
conclusions about the positive and negative distributions of our 
dataset. To see this, let us assume that our positively labeled 
samples are NOT selected completely at random from the set of 
all positive samples. That is, suppose there is some bias in the 
sampling process. This bias is then going to be learned from the 
training set and passed along to our model. 
 

3. PROPOSED METHOD – THE THEORY 

In this section, we introduce the mathematics behind our 
solution. Notice that because of the SCAR assumption described 
in section 2, the probability that a data sample is labeled positive 
given it’s feature characteristics, will never be 1, but will instead 
be some unknown constant c. This means that we need a 
probabilistic learner that has a maximum value of c instead of 1. 
Our solution is to construct and use a Modified Logistic 
Regression. The following sections describe this in more detail. 
 

3.1 A Probabilistic Approach 

A probabilistic solution for estimating 𝑝(𝑦 = 1|𝑥) and with it, 

𝑝(𝑦 = 1) is derived in [3]. First, a new random variable 𝑠 is 

introduced that represents whether a sample is labeled or 

unlabeled. If a sample is labeled positive, then 𝑠 = 1. If the 

sample is unlabeled, meaning it is unknown whether it is 

positive or negative, then 𝑠 = 0. The positive and unlabeled 

problem can be stated formally using this notation as 

 

𝑝(𝑠 = 1 | 𝑦 = 0) =  0. 

Using this extra variable 𝑠, the assumption that the positive 

labeled data are selected completely at random from the set of 

all positive data, i.e. the SCAR assumption, can be stated 

formally as 
 

𝑝(𝑠 = 1 | 𝑥, 𝑦 = 1) = 𝑝(𝑠 = 1 |𝑦 = 1) = 𝑐.        (1) 

Here, 𝑐 = 𝑝(𝑠 = 1|𝑦 = 1)  is the constant probability that a 
positive sample is labeled.  

The following derivation gives us the relationship between 

𝑝(𝑦 = 1|𝑥) , 𝑝(𝑠 = 1|𝑥)  and 𝑐  and is found in [3]. Given 

equation (1), the likelihood, or conditional probability, that a 

sample 𝑥 belongs to the positive set 𝑝(𝑦 = 1|𝑥) can be derived 

as follows. 
 

𝑝(𝑠 = 1 | 𝑥) =  𝑝(𝑠 = 1 ∧ 𝑦 = 1 | 𝑥) 

   = 𝑝(𝑦 = 1 | 𝑥) 𝑝(𝑠 = 1|𝑦 = 1, 𝑥) 

  = 𝑝(𝑦 = 1|𝑥) 𝑝(𝑠 = 1|𝑦 = 1) 

  = 𝑝(𝑦 = 1|𝑥) 𝑐.  
Therefore, 

𝑝(𝑦 = 1|𝑥)  =  𝑝(𝑠 = 1|𝑥)/𝑐.        (2) 

 

Here, 𝑓(𝑥) = 𝑝(𝑦 = 1|𝑥)  is known as a “traditional 

classifier” and 𝑔(𝑥) = 𝑝(𝑠 = 1|𝑥) is called a “nontraditional 

classifier” in that it learns the label of a sample rather than 
learning if it is positive. There are several important 

consequences of this derivation. As [3] point out, 𝑓(𝑥) is an 

increasing function of 𝑔(𝑥).  Additionaly, 𝑓(𝑥) = 𝑔(𝑥)/𝑐 is a 

well-defined probability, such that 𝑓(𝑥) ≤ 1  only if 𝑔(𝑥) ≤
𝑐 = 𝑝(𝑠 = 1|𝑦 = 1). Formally, 

 

𝑔(𝑥) =  𝑝(𝑠 = 1│𝑥) ≤ 𝑝(𝑠 = 1|𝑦 = 1) = 𝑐.    (3) 

 

 
Figure 2: Separability Assumptions. 



Unfortunately, learning 𝑔(𝑥) = 𝑝(𝑠 = 1|𝑥)  is inherently 

difficult due to the inseparability of the labeled and unlabeled 

classes due the SCAR assumption. [3] used standard logistic 

regression to learn the non-traditional classifier 𝑔(𝑥). In this 
paper, we argue that a modified logistic regression will provide 

a better classifier for 𝑔(𝑥). In the next section, we describe this 

modified logistic regression in detail. 

 

3.2 Modified Logistic Regression  

In Section 31, we described a derivation of 𝑝(𝑦 = 1|𝑥). If we 

could learn an estimate of 𝑐 and the nontraditional classifier 

𝑔(𝑥) = 𝑝(𝑠 = 1|𝑥) , we could calculate 𝑓(𝑥) = 𝑝(𝑦 = 1|𝑥) 
from equation (2). As mentioned above, learning the 

nontraditional classifier 𝑔(𝑥) is inherently difficult due to the 

SCAR assumption and the overlapping nature of our labeled 

and unlabeled classes.  

As shown in equation (3), for 𝑓(𝑥) = 𝑝(𝑦 = 1|𝑥) to be a 

well-defined probability, 𝑔(𝑥) =  𝑝(𝑠 = 1| 𝑥) ≤ 𝑝(𝑠 =
1| 𝑦 = 1) = 𝑐.  A critical point therefore, is that the probability 

output for our nontraditional classifier 𝑔(𝑥) = 𝑝(𝑠 = 1|𝑥) 

needs to be in the range of [0, 𝑐]  not [0,1]  as are typical 

probabilities generated by standard probabilistic learning 

algorithms. Our solution is to introduce a modified logistic 

regression algorithm with a variable upper bound that is less 

than or equal to 1. This is a simplification of a Generalized 

Logistics Curve, also known as a Richard’s Curve. The upper 

bound is not given as an input to the algorithm but is learned as 

part of the training process. From (3) we know that if 𝑔(𝑥) =
𝑝(𝑠 = 1|𝑥) is well calibrated, it will be less than or equal to 𝑐. 

It follows that we can take the asymptote of our modified 

logistic regression to be an estimate of 𝑐, 𝑐̂. 
 

𝑐̂ = max
𝑥

𝑝(𝑠 = 1|𝑥) 
 

A standard probabilistic logistic regression learner of 𝑔(𝑥) 
that asymptotes at 0 and 1 has the equation: 

 

𝑔𝑆𝐿𝑅(𝑥) =  𝑝(𝑠 = 1 |𝑥̅ ) =  
1

1 + 𝑒−𝑤̅∙𝑥̅
 

 

where 𝑤̅ is the learned d-dimensional weight vector and 𝑥̅ and 

𝑠 are the input feature values and binary label for the given 

sample, respectively. To enable an upper bound of less than 1, 

we insert an additional variable in the denominator and 

differentiate our learner by naming it 𝑔𝑀𝐿𝑅(𝑥). We can ensure 
that this upper bound is greater than or equal to zero by squaring 

this variable: 𝑏2. Because 𝑏2 is in the denominator, the upper 

bound will be less than or equal to one. 
 

𝑔𝑀𝐿𝑅(𝑥̅) = 𝑝(𝑠 = 1|𝑥̅) = 
1

1+𝑏2+𝑒−𝑤̅ 𝑥̅              (4) 
 

The upper bound asymptote can be calculated as  
 

𝑐̂ = 1/(1 + 𝑏2)    (5) 
 

An illustration of gMLR(𝑥) with an asymptote at a 𝑐 value less 

than 1 can be seen in Figure 3. This modified logistic regression 

leads us to our algorithm, described in the next section. 

 

4. PROPOSED METHOD – THE ALGORITHM  

The goal of any binary classifier is to assign each data sample 

into one of two classes, depending on which is more likely 

given the features available. In a probabilistic algorithm, we go 

one step further by returning the probability that each data  

sample belongs in the positive class. In this algorithm, we use 

the modified logistic regression algorithm described in the 

previous section.  

 

4.1. Step 1 – Learning a nontraditional classifier 

The first step in our algorithm will be to learn a non-traditional 

classifier from our training data to identify the probability that 
a given sample x is labeled positive (not that it IS positive). That 

is, we would like to learn 𝑝(𝑠 = 1|𝑥) and 𝑝(𝑠 = 0|𝑥). From 

equation (4) above, we get that 
  

𝑝(𝑠 = 1 |𝑥̅ ) =
1

1 + 𝑏2 + 𝑒−𝑤̅∙𝑥̅
 

 

From this, we can construct 𝑝(𝑠 = 0|𝑥) as  
  

𝑝(𝑠 = 0| 𝑥̅ ) = 1 − 𝑝(𝑠 = 1|𝑥̅) =
𝑏2 + 𝑒−𝑤̅∙𝑥̅

1 + 𝑏2 + 𝑒−𝑤̅∙𝑥̅
. 

  

Our first step is to learn the values of the weight vectors 𝑤̅ 

and the random variable 𝑏 that maximize the likelihood of each 

data sample and label. To maximize this likelihood during 

training, we take the gradient of the log-likelihood and train for 

𝜀 epochs with an adaptive learning rate 𝜆 until convergence. 

The values for 𝜀 and 𝜆 will need to be tuned individually for 

each data set though 𝜖 = 1000 and 𝜆 = 1/𝜖 seem to be fairly 

effective in most cases. 

 

4.2. Step 2 – Construct the final classifier 

Once 𝑏  has been learned in the previous step, we can use 

equation (5) to estimate 𝑐 as 𝑐̂ = 1/(1 + 𝑏2). With an estimate 

of 𝑐, we can now estimate our end-goal, the traditional classifier 

𝑝(𝑦 = 1|𝑥) using 𝑝(𝑠 = 1|𝑥) and the estimate of 𝑐, 𝑐̂ as  

𝑝(𝑦 = 1|𝑥) =
𝑝(𝑠 = 1|𝑥)

𝑐̂
. 

 
Figure 3: Modified logistic regression (MLR) compared to 

standard (SLR) when learning 𝑔(𝑥) = 𝑝(𝑠 = 1|𝑥) from 

equation (4) on simulated data where 𝑐 = 0.75. 



5.  EXPERIMENTAL DATA AND RESULTS 

To test the proposed modified logistic regression algorithm, we 

used both simulated data as well as some basic image 

classification using the MNIST dataset.  Due to the potential for 

uneven class sizes, the F-score was used as our evaluation 

metric as accuracy and error rate metrics are not useful when 

class sizes are heavily skewed. 

 

5.1 Simulated Data Setup and Results 

To determine the effectiveness of our modified logistic 

regression algorithm, we created three simulated data 

distributions in two dimensions shown in Figure 4(a). For each 
of these distributions, we used three different data sizes shown 

in Figure 4(b). Finally, with each of these combinations of data 

distribution and data size, we looked at nine different values of  

𝑐  from 0.1 to 0.9. Recall that 𝑐  is the percentage of known 

positives out of the total positives.  This gives us 81 different 

scenarios on which to evaluate our solution. For each test 

scenario, we performed 50 Monte Carlo simulations and 

recorded their average. 

In performing these simulations, we compared an Oracle 

(classification using a standard logistic regression where all the 

true labels are known), standard logistic regression (SLR) on 
the PU data, the three estimators presented in [3], and our 

proposed modified logistic regression (MLR) algorithm. For 

illustrative simplicity, we have only plotted the best estimator 

from [3] which we have called ‘Elkan and Noto’ after the 

authors.  

We found that our proposed MLR algorithm gave 

improved results 96.3% of the time, or in 78 out of 81 

simulations.   

 

5.2 MNIST Data and Results 

We also compared the algorithms described in 5.1 to the image 

processing MNIST problem of handwritten digit classification. 
For simplicity, we performed no feature engineering, and 

simply used the unrolled pixel values given for all algorithms. 

This standard classification problem has 60,000 training 

samples of the digits 0-9 with approximately 6000 samples for 

each digit. We performed binary classification of the most 

commonly mis-classified digit pairs: 3 and 5, 3 and 8, and 5 and 

8.  We tested 𝑐 values of 0.1, 0.25, 0.5, and 0.75.  

In every case, our proposed MLR outperformed the other 

algorithms tested, by an average of over 17%.  

 

 
Figure 6: MNIST Results between easily confusable digits 

3 and 8. When 𝑐 = 0.1, only 10% of the 3’s are known and 

all others (90% of 3’s and 100% of 8’s) are unknown. 

6. CONCLUSION 

The positive unlabeled (PU) learning problem exists in many 

important real-world applications. Labeled data is difficult and 

expensive to obtain, and true negatively labeled data may be 

impossible or impractical. Our solution introduces a modified 

logistic regression and has been shown to be extremely 

effective and to out-perform the current state-of-the art 

algorithms on both simulated data and when using the MNIST 
dataset for real-world image classification.  Future work will 

compare more algorithms over additional datasets. 

 
Figure 4: Simulated Data Distribution. 

 
Figure 5: Results over selected simulated dataset with 

uneven class sizes. 



7. ADDITIONAL RESOURCES 

The positive unlabeled learning problem is a growing area of 

research in semi-supervised learning.  Recent survey papers [2], 

[4] give an overview of the field, its applications, and 

approaches. Some recent papers of interest include [7]–[22], 

and [23]–[25] are foundational.  Previous work in the SenSIP 

Center in machine learning methods includes [26]–[29] 
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