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implementation of deep learning tasks on
low powered devices (Microsoft HoloLens),
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1 To create a platform that assists individuals
in locating objects in their immediate
environments via computer vision and
mobile systems
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w Accuracy ™ Time to Frame Completion
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—@)- RetinaNet-50

—‘— RetinaNet-101
Method mAP-50 time
[B] SSD321 45.4 61
[C] DSSD321 46.1 85
[D] R-FCN 51.9 85
[E] SSD513 50.4 125
[F] DSSD513 53.3 156

[G] FPN FRCN 59.1 172
RetinaNet-50-500 50.9 73
RetinaNet-101-500 53.1 90
RetinaNet-101-800 57.5 198

YOLOv3-320 51.5 22
48 - YOLOv3-416 55.3 29
YOLOv3-608 57.9 51
100 150 200 250
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inference time (mMs)



