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Deep Learning to Identify and Predict Objects in the Environment

MOTIVATION

❑ Utilize advances in deep learning to assist in 
the ubiquitous tasks of memorization of 
object placement

❑ Employ advanced power savings techniques 
to drastically improve feasibility in low 
powered devices

PROJECT AIM

❑ This project will focus on the application of 
these models, the feasibility and 
implementation of deep learning tasks on 
low powered devices (Microsoft HoloLens), 
and future applications of this system.

METHOD SERVER RESULTS
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PROBLEM STATEMENT

QUALITATIVE RESULTS

❑We found YOLOv3 to fit the project
needs most effectively (although
Tiny YOLO for serverless solutions
may be more feasible, although the
issue of accuracy still remains)

❑ The client software implementation
used very little hardware resources,
future implementations may include
ways to leverage this hardware to
expand existing capabilities

❑ YOLOv3: model for real time object 
classification 
❑ Flask: client/server integration and 

secure data transfer

❑ NVIDIA CUDA: server side GPU 
Acceleration
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YOLOv3

❑ To create a platform that assists individuals 
in locating objects in their immediate 
environments via computer vision and 
mobile systems

CHALLENGES

❑ Quickly detecting objects in the 
environment
❑ Doing so efficiently and reliably both in 

respect to client and server operations
❑ Leveraging available hardware to 

accomplish the task

REAL WORLD OBJECT DETECTION
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YOLOv3 Tiny YOLO Faster RCNN
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