
  

Abstract— A central challenge in object tracking for 
embedded computer vision is the large amount of energy 
consumed during image sensing. This REU study uses a Kalman 
filter alongside a pre-trained convolutional neural network to 
track an object’s position and size through consecutive video 
frames. The filter alternates between updating its estimate of the 
object’s location based on new measurements and predicting its 
location based solely on the filter’s mathematical model of the 
object’s trajectory. These predictions of the object’s position and 
size are then used to subsample only the region of the image 
containing the object. Experiments have shown average energy 
savings of up to 65% with 24% loss in mean average precision 
when run on videos from the TB100 and ILSVRC2015 data sets. 
In summary, our study provides a new method for video 
subsampling that shows promise for increasing the battery life 
of embedded devices with minimal loss in task accuracy. 

 
Index terms: Embedded system, computer vison, Kalman filter, 

object tracking/detection. 
 

I. INTRODUCTION 

A major issue in embedded image sensing and object 
tracking applications is the amount of energy required for 
image sensing. Applications ranging from autonomous 
vehicles to augmented reality headsets are made possible due 
to recent advances in object detection and tracking algorithms 
and the development of hardware powerful enough to run 
them. However, many of these embedded devices experience 
poor, if not abysmal, battery life in part due to the energy 
requirements imposed by their camera(s). For instance, the 
Google Glass headset attains a meager 45-minute battery life 
under continuous use, and image sensing accounts for nearly 
50% of its power usage [1]. 

Previous research has developed methods for energy 
efficient object tracking, most commonly using image 
subsampling, where certain rows and columns of pixels are 
turned off or the resolution of the image is reduced by taking 
averages or maxima of surrounding pixels [2]. A recent study 
used an algorithm to generate an objectness map which 
identified regions of interest which they used to create an 
image mask [3]. This mask was used to determine which pixels 
to disable. They compared this approach to disabling random 
pixels throughout the image in an attempt to maintain image 
coherence [3]. However, these methods have several 
limitations. The row/column disabling, binning, and random 
disabling methods all suffer from reduced accuracy due to loss 
of image features of the object(s) of interest. Methods using 
objectness metrics require frequently capturing new reference 
frames whenever the object moves out of the subsampled area, 
thus limiting the amount of energy saved [3]. 

In this study, we address some of these issues specifically 
the loss of image features of the object(s) of interest by 
utilizing a Kalman filter. We begin by using a pre-trained 
convolutional neural network (CNN) to identify the location  

and bounding box of an object in video frames. This 
information is then fed into a Kalman Filter which will update 
an estimate of the object’s location [4]. The system alternates 
between running object detection on fully sampled frames to 
update the estimate, and outputting predictions of the object’s 
state based solely on the filter’s learned model. This 
prediction will be used to determine which areas of the image 
to capture and which to disable. The goal is to outperform the 
previously mentioned methods of subsampling in terms of 
average number of pixels disabled while maintaining 
accuracy and image features. 

II. METHOD 

In short, our algorithm uses an object detector to measure 
the position and size of objects in video frames. These 
measurements are used by a Kalman filter to track the object 
and predict where it is going to be. These predictions are 
used to sample only the regions of the frame where the 
object is anticipated to be.  

A. Kalman Filter 

The Kalman Filter is an efficient mathematical solution to 
the problem of discrete signal estimation [5]. Put more simply, 
it takes in noisy measurements of a dynamic system and 
recursively updates an estimate of the system’s state (in this 
case, position and size). The filter is comprised of a set of 
linear equations that can be broken up into two distinct phases: 

Predict: 

State Prediction:             𝑥ௗ = 𝐴𝑥ିଵ                  (1) 

Covariance Prediction: 𝑃ௗ = 𝐴𝑃ିଵ𝐴
் + 𝑄      (2) 

Update: 

Innovation:                      y = 𝑧 − 𝐻𝑥ௗ               (3) 

Innovation Covariance: S = 𝐻𝑃ௗ𝐻
் + 𝑅           (4) 

Kalman Gain:                 K = 𝑃ௗ𝐻
்𝑆ିଵ               (5) 

State Update:                 𝑥 = 𝑥ௗ + 𝐾𝑦               (6) 

         Covariance Update:       𝑃 = (𝐼 − 𝐾𝐻)𝑃ௗ           (7) 

 

Figure 1. Logical flow of the Kalman filter 
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where x represents predicted state vector, A represents state 
transition matrix, Q represents process noise covariance, z 
represents measurement vector, H represents state transition 
matrix, R represents measurement covariance matrix and  I 
represent identity matrix. 
    The prediction equations (1 and 2) use the mathematical 
model of the system, in the form of the state transition matrix, 
to project the current system state one time-step into the future. 
The update equations then take in a measurement at that time 
and compare it to the predicted (projected) state. The 
difference, or ‘innovation’, is then used to find the Kalman 
Gain (K). Consequently, a new state estimate is calculated 
using K to determine how much the new measurement should 
be weighted.  

B. Tiny-YOLO (CNN) 

 You Only Look Once (YOLO) is a recent convolutional 
neural network architecture which boasts improvements in 
accuracy over other state of the art architectures while also 
vastly improving on execution time [7]. As the name would 
suggest, unlike other modern object detection algorithms 
which iteratively perform classification on numerous 
subsections of the image, like RCNN (Regions with CNN 
features), YOLO needs to execute only one pass through its 
network in order to predict bounding boxes and class 
probabilities [8]. 

Tiny-YOLO (TY) is a scaled down version of the network 
which is less accurate, but also runs significantly faster (up to 
155 frames per second (FPS) on a Nvidia Titan X GPU[7]). 
TY’s single pass approach and scaled down network size 
make it attractive for use in embedded devices with limited 
resources. 

C. Algorithm/System Design 

  Our algorithm uses Tiny-YOLO (TL) and a constant 
velocity Kalman Filter to detect objects of interest in video 
and to track them through subsequent frames. As shown in 
Figure 3., we alternate between update and prediction phases 
in order to accurately sample only the regions of each frame 
containing the object of interest. 
 During the update phase, a fully sampled reference frame 
is captured. The first step in our pipeline is object location 
detection using TY which results in an output in the form of a 
bounding box (x, y, height, width). The following step 

involves passing the bounding box parameters into the 
Kalman filter. The Kalman filter takes the bounding box as a 
measurement and uses it to update its internal state estimate 
vector. 
 In the prediction phase, the two prediction equations (Eq. 1 
and Eq. 2) of the Kalman Filter are used to extrapolate the 
object’s current trajectory for both its position and bounding 
box dimensions. Consequently, a new bounding box is 
obtained which is used to create a pixel mask and determine 
specific regions of the image that should be subsampled (i.e. 
omitted). 
 Rather than using the predicted bounding box itself as the 
mask, we opted to subsample based on which cells in a 7x7 
grid the bounding box falls within (shown in Figure 4.). This 
is in consistency with the actual TY algorithm which divides 
the image into a 7x7 grid.  
    Expanding the mask to these predefined cell boundaries 
serves two purposes and has one main drawback. First, 
increasing the subsampled area serves to preserve more 
information and thus increases the accuracy of future 
computer vision tasks performed on the video (see Table. 2 
on the following page). It provides a regularly defined buffer 
zone in case inaccuracies in either TY’s detections or the 
Kalman Filter’s predictions lead to portions of the object 
falling outside the predicted bounding box.  Second, the fixed 
grid-size also provides advantages in terms of implementing 
the algorithm on imaging sensor hardware since arbitrary 

Figure 2. Visualization of the YOLO algorithm [7] 

Figure 3. Proposed algorithm consisting of (1) sampling, (2) 
detection, (3) update/predict, (4) mask creation, and (5) image 
subsampling the subsequent frames. 

Figure 4. Difference between bounding box mask and cell-based mask 



  

shaped ROIs are difficult to implement in embedded systems. 
The camera that is currently being designed using our base 
algorithm works optimally with rectangular and consistent 
masks. However, the drawback of using this sizing scheme is 
the seemingly inherent tradeoff between information 
preserved and energy expended; by increasing the size of the 
mask we reduce the energy conserved. Although, 
subsampling via this grid method is partially arbitrary, in the 
sense that any other grid size could be used (e.g. 6x6, 8x8, 
etc.). We leave this exploration of sizing scheme as a part of 
future work. 

 

III. RESULTS 

A. Data Set Description 

A majority of the testing and development of the project 
has been done on the TB100 data set, which is a set of 100 
videos of various objects with different types of aberrations 
(e.g. sporadic motion, blurriness, occlusion, etc.) [9]. Since 
the scope of the project is currently limited to single object 
tracking, and the fact that the pretrained Tiny-YOLO weights 
are trained to detect 20 classes of objects, we selected only the 
videos that met those criteria [7]. In order to test our algorithm 
on a larger and more robust data set, we also took videos from 
the ImageNet Large Scale Visual Recognition Challenge 
2015 (ILSVRC2015) [10]. 

B. Qualitative Results 

 The predicted and subsampled output video frames from 
the system look promising, however certain types of 
aberrations cause either the detector or the filter to lose 
accuracy, which is expected. For example, we have found that 
partial object occlusion causes TY to lose confidence in its 
predictions which can lead to oversized bounding boxes 
(Figure. 5).  
 Additionally, sporadic and/or rapid motion of either the 
object or the camera can cause the Kalman filter to lose the 
object temporarily if it is performing many predictions in a 
row, or to lag behind the object if the change in velocity is 
sharp enough. There are methods to compensate for the latter, 

in the form of an adaptive Kalman Filter, which we hope to 
look into in future work [11]. 

C. Quantitative Results 

Metrics: In our project, we focus on three main metrics- 
Intersection over Union (IOU) with respect to the ground 
truth, which is the ratio between the overlap of two bounding 
boxes and their total combined area, Mean Average Precision 
(mAP), and Energy saved, measured by the ratio of 
deactivated pixels to total pixels.  

More specifically, we look at the performance (mAP) of 
TY when run on the subsampled video frames output by the 
system relative to two references- the performance of TY 
when run on the fully sampled frames (mAP_full) and when 
run on frames subsampled according to the ground truth 
bounding boxes (mAP_ground). The point is to gauge how 
much accuracy is lost from subsampling and to see the 
difference between the system’s subsampling and the best-
case scenario (subsampled according to the ground truth). 
 For the purpose of our study, mAP is calculated as the 
number of frames in a video in which TY’s output correctly 

Effect of cell borders 
on mAP 

Number of predictions per update 
1 5 10 15 20 25 30 

Cell border 0.930 0.807 0.752 0.734 0.814 0.716 0.703 

Box border 0.743 0.594 0.516 0.453 0.508 0.501 0.503 
 

Table 1. Comparison of accuracy and energy savings metrics between various prediction levels. 

Table 2. Comparison of accuracy (mAP) between two methods for creating the subsampling mask. 

Figure 5. Loss of bounding box accuracy due to occlusion 

Accuracy loss and 
energy savings 

Number of predictions per update 
1 5 10 15 20 25 30 

mAP/mAP_full 0.930 0.807 0.752 0.734 0.814 0.716 0.703 
mAP/mAP_ground 1.012 0.854 0.784 0.766 0.877 0.734 0.729 
Pixel ratio 0.352 0.590 0.646 0.659 0.663 0.679 0.682 
IOU/IOU_full 1.009 0.958 0.923 0.900 0.896 0.887 0.877 
IOU 0.680 0.647 0.625 0.610 0.608 0.601 0.595 

 



  

 

identifies the object’s class and has an IOU greater than 0.5 
with the ground truth divided by the total number of frames. 
 These three criteria are each evaluated at seven different 
prediction levels ranging from 1 to 30, as shown in Figure. 6. 
These prediction levels are the number of predictions made 
per update. i.e. the greater the prediction level, the greater the 
energy savings, but the greater the expected loss in accuracy. 
Performing this ablation study, gives us a clear idea that 
prediction level 5 works well in terms of Energy savings 
while maintaining detection accuracy. 

As evident from the results in Table 1. And Figure 6., as we 
increase the number of predictions from one, to ten the energy 
savings (shown here as the “Pixel ratio”) quickly jumps up to 
nearly 65% while only losing 24.8% mAP relative to the fully 
sampled reference run. Further increases to the number of 
predictions yield diminishing returns in terms of energy 
savings, while the mAP continues to fall. Therefore, 
depending on the video, the optimal trade of between 
accuracy and power efficiency is somewhere in the range of 
5-10 predictions. 
 We plot the IOU/IOU_full to highlight the fact that at one 
prediction per update IOU is higher than the reference, and 
overall it falls far slower than the mAP. We believe this 
indicates that the drop in mAP has more to do with TY 
misclassifying the subsampled images and not because of 
inaccurate tracking. We plan to investigate this further in 
future research by using different object detector networks to 
perform evaluation. 
 Lastly, as mentioned earlier, Table 2. shows the positive 
effect of the cell-boundary based masks on mAP. The use of 
these larger masks increases the mAP by 30.3% on average. 
 

IV. DISCUSSION AND FUTURE WORK 

Our proposed algorithm for video subsampling shows 
potential for embedded devices performing computer vision 
tasks. It has the advantage of using a relatively 
computationally cheap CNN for its detections, and it uses 
predictive tracking so as to avoid frequently capturing 
reference frames. A downside is that unless an application is 
only interested in tracking objects that belong to the 20 classes 

that Tiny YOLO (TY) was trained on, TY will need to be 
trained on new data. Fortunately, TY is just the network we 
happened to use. Any detector that returns bounding boxes for 
objects of the class of interest will work, so long as the 
embedded device has the resources to run the detector. 
 In the future, we have several avenues for further study we 
would like to explore. As previously mentioned, we want to 
look into implementing adaptive Kalman filtering, which 
involves adaptively adjusting the filter’s covariance matrices 
to reduce tracking lag and jitteriness. Additionally, in its 
current state the system can only handle having one object of 
interest in the scene at a time. We wish to make it so that the 
system maintains separate Kalman filters for every object in 
the scene and can differentiate multiple objects. Finally, 
during testing it became apparent that different prediction 
phase lengths performed better or worse depending on the 
video, so we plan on looking into adaptively changing the 
number of predictions made per update. 
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Figure 6. Graph of accuracy and energy savings for varying 
levels of prediction. The optimal trade off point between 
accuracy and power efficiency is at the 5 predictions level, with a 
accuracy loss of 19.3% and an energy savings of 59%. 


