

Abstract— A central challenge in object tracking for
embedded computer vision is the large amount of energy
consumed during image sensing. This REU study uses a Kalman
filter alongside a pre-trained convolutional neural network to
track an object’s position and size through consecutive video
frames. The filter alternates between updating its estimate of the
object’s location based on new measurements and predicting its
location based solely on the filter’s mathematical model of the
object’s trajectory. These predictions of the object’s position and
size are then used to subsample only the region of the image
containing the object. Experiments have shown average energy
savings of up to 65% with 24% loss in mean average precision
when run on videos from the TB100 and ILSVRC2015 data sets.
In summary, our study provides a new method for video
subsampling that shows promise for increasing the battery life
of embedded devices with minimal loss in task accuracy.

Index terms: Embedded system, computer vison, Kalman filter,

object tracking/detection.

I. INTRODUCTION

A major issue in embedded image sensing and object
tracking applications is the amount of energy required for
image sensing. Applications ranging from autonomous
vehicles to augmented reality headsets are made possible due
to recent advances in object detection and tracking algorithms
and the development of hardware powerful enough to run
them. However, many of these embedded devices experience
poor, if not abysmal, battery life in part due to the energy
requirements imposed by their camera(s). For instance, the
Google Glass headset attains a meager 45-minute battery life
under continuous use, and image sensing accounts for nearly
50% of its power usage [1].

Previous research has developed methods for energy
efficient object tracking, most commonly using image
subsampling, where certain rows and columns of pixels are
turned off or the resolution of the image is reduced by taking
averages or maxima of surrounding pixels [2]. A recent study
used an algorithm to generate an objectness map which
identified regions of interest which they used to create an
image mask [3]. This mask was used to determine which pixels
to disable. They compared this approach to disabling random
pixels throughout the image in an attempt to maintain image
coherence [3]. However, these methods have several
limitations. The row/column disabling, binning, and random
disabling methods all suffer from reduced accuracy due to loss
of image features of the object(s) of interest. Methods using
objectness metrics require frequently capturing new reference
frames whenever the object moves out of the subsampled area,
thus limiting the amount of energy saved [3].

In this study, we address some of these issues specifically
the loss of image features of the object(s) of interest by
utilizing a Kalman filter. We begin by using a pre-trained
convolutional neural network (CNN) to identify the location

and bounding box of an object in video frames. This
information is then fed into a Kalman Filter which will update
an estimate of the object’s location [4]. The system alternates
between running object detection on fully sampled frames to
update the estimate, and outputting predictions of the object’s
state based solely on the filter’s learned model. This
prediction will be used to determine which areas of the image
to capture and which to disable. The goal is to outperform the
previously mentioned methods of subsampling in terms of
average number of pixels disabled while maintaining
accuracy and image features.

II. METHOD

In short, our algorithm uses an object detector to measure
the position and size of objects in video frames. These
measurements are used by a Kalman filter to track the object
and predict where it is going to be. These predictions are
used to sample only the regions of the frame where the
object is anticipated to be.

A. Kalman Filter

The Kalman Filter is an efficient mathematical solution to
the problem of discrete signal estimation [5]. Put more simply,
it takes in noisy measurements of a dynamic system and
recursively updates an estimate of the system’s state (in this
case, position and size). The filter is comprised of a set of
linear equations that can be broken up into two distinct phases:

Predict:

State Prediction: 𝑥௣௥௘ௗ = 𝐴𝑥௡ିଵ (1)

Covariance Prediction: 𝑃௣௥௘ௗ = 𝐴𝑃௡ିଵ𝐴
் + 𝑄 (2)

Update:

Innovation: y = 𝑧௡ − 𝐻𝑥௣௥௘ௗ (3)

Innovation Covariance: S = 𝐻𝑃௣௥௘ௗ𝐻
் + 𝑅 (4)

Kalman Gain: K = 𝑃௣௥௘ௗ𝐻
்𝑆ିଵ (5)

State Update: 𝑥௡ = 𝑥௣௥௘ௗ + 𝐾𝑦 (6)

 Covariance Update: 𝑃௡ = (𝐼 − 𝐾𝐻)𝑃௣௥௘ௗ (7)

Figure 1. Logical flow of the Kalman filter

Joshua Martin, Sameeksha Katoch, Student Member, IEEE, Suren Jayasuriya, Member, IEEE, and Andreas
Spanias, Fellow, IEEE

Kalman Filter Driven Video Subsampling for Energy Efficient
Computer Vision

where x represents predicted state vector, A represents state
transition matrix, Q represents process noise covariance, z
represents measurement vector, H represents state transition
matrix, R represents measurement covariance matrix and I
represent identity matrix.
 The prediction equations (1 and 2) use the mathematical
model of the system, in the form of the state transition matrix,
to project the current system state one time-step into the future.
The update equations then take in a measurement at that time
and compare it to the predicted (projected) state. The
difference, or ‘innovation’, is then used to find the Kalman
Gain (K). Consequently, a new state estimate is calculated
using K to determine how much the new measurement should
be weighted.

B. Tiny-YOLO (CNN)

 You Only Look Once (YOLO) is a recent convolutional
neural network architecture which boasts improvements in
accuracy over other state of the art architectures while also
vastly improving on execution time [7]. As the name would
suggest, unlike other modern object detection algorithms
which iteratively perform classification on numerous
subsections of the image, like RCNN (Regions with CNN
features), YOLO needs to execute only one pass through its
network in order to predict bounding boxes and class
probabilities [8].

Tiny-YOLO (TY) is a scaled down version of the network
which is less accurate, but also runs significantly faster (up to
155 frames per second (FPS) on a Nvidia Titan X GPU[7]).
TY’s single pass approach and scaled down network size
make it attractive for use in embedded devices with limited
resources.

C. Algorithm/System Design

 Our algorithm uses Tiny-YOLO (TL) and a constant
velocity Kalman Filter to detect objects of interest in video
and to track them through subsequent frames. As shown in
Figure 3., we alternate between update and prediction phases
in order to accurately sample only the regions of each frame
containing the object of interest.
 During the update phase, a fully sampled reference frame
is captured. The first step in our pipeline is object location
detection using TY which results in an output in the form of a
bounding box (x, y, height, width). The following step

involves passing the bounding box parameters into the
Kalman filter. The Kalman filter takes the bounding box as a
measurement and uses it to update its internal state estimate
vector.
 In the prediction phase, the two prediction equations (Eq. 1
and Eq. 2) of the Kalman Filter are used to extrapolate the
object’s current trajectory for both its position and bounding
box dimensions. Consequently, a new bounding box is
obtained which is used to create a pixel mask and determine
specific regions of the image that should be subsampled (i.e.
omitted).
 Rather than using the predicted bounding box itself as the
mask, we opted to subsample based on which cells in a 7x7
grid the bounding box falls within (shown in Figure 4.). This
is in consistency with the actual TY algorithm which divides
the image into a 7x7 grid.
 Expanding the mask to these predefined cell boundaries
serves two purposes and has one main drawback. First,
increasing the subsampled area serves to preserve more
information and thus increases the accuracy of future
computer vision tasks performed on the video (see Table. 2
on the following page). It provides a regularly defined buffer
zone in case inaccuracies in either TY’s detections or the
Kalman Filter’s predictions lead to portions of the object
falling outside the predicted bounding box. Second, the fixed
grid-size also provides advantages in terms of implementing
the algorithm on imaging sensor hardware since arbitrary

Figure 2. Visualization of the YOLO algorithm [7]

Figure 3. Proposed algorithm consisting of (1) sampling, (2)
detection, (3) update/predict, (4) mask creation, and (5) image
subsampling the subsequent frames.

Figure 4. Difference between bounding box mask and cell-based mask

shaped ROIs are difficult to implement in embedded systems.
The camera that is currently being designed using our base
algorithm works optimally with rectangular and consistent
masks. However, the drawback of using this sizing scheme is
the seemingly inherent tradeoff between information
preserved and energy expended; by increasing the size of the
mask we reduce the energy conserved. Although,
subsampling via this grid method is partially arbitrary, in the
sense that any other grid size could be used (e.g. 6x6, 8x8,
etc.). We leave this exploration of sizing scheme as a part of
future work.

III. RESULTS

A. Data Set Description

A majority of the testing and development of the project
has been done on the TB100 data set, which is a set of 100
videos of various objects with different types of aberrations
(e.g. sporadic motion, blurriness, occlusion, etc.) [9]. Since
the scope of the project is currently limited to single object
tracking, and the fact that the pretrained Tiny-YOLO weights
are trained to detect 20 classes of objects, we selected only the
videos that met those criteria [7]. In order to test our algorithm
on a larger and more robust data set, we also took videos from
the ImageNet Large Scale Visual Recognition Challenge
2015 (ILSVRC2015) [10].

B. Qualitative Results

 The predicted and subsampled output video frames from
the system look promising, however certain types of
aberrations cause either the detector or the filter to lose
accuracy, which is expected. For example, we have found that
partial object occlusion causes TY to lose confidence in its
predictions which can lead to oversized bounding boxes
(Figure. 5).
 Additionally, sporadic and/or rapid motion of either the
object or the camera can cause the Kalman filter to lose the
object temporarily if it is performing many predictions in a
row, or to lag behind the object if the change in velocity is
sharp enough. There are methods to compensate for the latter,

in the form of an adaptive Kalman Filter, which we hope to
look into in future work [11].

C. Quantitative Results

Metrics: In our project, we focus on three main metrics-
Intersection over Union (IOU) with respect to the ground
truth, which is the ratio between the overlap of two bounding
boxes and their total combined area, Mean Average Precision
(mAP), and Energy saved, measured by the ratio of
deactivated pixels to total pixels.

More specifically, we look at the performance (mAP) of
TY when run on the subsampled video frames output by the
system relative to two references- the performance of TY
when run on the fully sampled frames (mAP_full) and when
run on frames subsampled according to the ground truth
bounding boxes (mAP_ground). The point is to gauge how
much accuracy is lost from subsampling and to see the
difference between the system’s subsampling and the best-
case scenario (subsampled according to the ground truth).
 For the purpose of our study, mAP is calculated as the
number of frames in a video in which TY’s output correctly

Effect of cell borders
on mAP

Number of predictions per update
1 5 10 15 20 25 30

Cell border 0.930 0.807 0.752 0.734 0.814 0.716 0.703

Box border 0.743 0.594 0.516 0.453 0.508 0.501 0.503

Table 1. Comparison of accuracy and energy savings metrics between various prediction levels.

Table 2. Comparison of accuracy (mAP) between two methods for creating the subsampling mask.

Figure 5. Loss of bounding box accuracy due to occlusion

Accuracy loss and
energy savings

Number of predictions per update
1 5 10 15 20 25 30

mAP/mAP_full 0.930 0.807 0.752 0.734 0.814 0.716 0.703
mAP/mAP_ground 1.012 0.854 0.784 0.766 0.877 0.734 0.729
Pixel ratio 0.352 0.590 0.646 0.659 0.663 0.679 0.682
IOU/IOU_full 1.009 0.958 0.923 0.900 0.896 0.887 0.877
IOU 0.680 0.647 0.625 0.610 0.608 0.601 0.595

identifies the object’s class and has an IOU greater than 0.5
with the ground truth divided by the total number of frames.
 These three criteria are each evaluated at seven different
prediction levels ranging from 1 to 30, as shown in Figure. 6.
These prediction levels are the number of predictions made
per update. i.e. the greater the prediction level, the greater the
energy savings, but the greater the expected loss in accuracy.
Performing this ablation study, gives us a clear idea that
prediction level 5 works well in terms of Energy savings
while maintaining detection accuracy.

As evident from the results in Table 1. And Figure 6., as we
increase the number of predictions from one, to ten the energy
savings (shown here as the “Pixel ratio”) quickly jumps up to
nearly 65% while only losing 24.8% mAP relative to the fully
sampled reference run. Further increases to the number of
predictions yield diminishing returns in terms of energy
savings, while the mAP continues to fall. Therefore,
depending on the video, the optimal trade of between
accuracy and power efficiency is somewhere in the range of
5-10 predictions.
 We plot the IOU/IOU_full to highlight the fact that at one
prediction per update IOU is higher than the reference, and
overall it falls far slower than the mAP. We believe this
indicates that the drop in mAP has more to do with TY
misclassifying the subsampled images and not because of
inaccurate tracking. We plan to investigate this further in
future research by using different object detector networks to
perform evaluation.
 Lastly, as mentioned earlier, Table 2. shows the positive
effect of the cell-boundary based masks on mAP. The use of
these larger masks increases the mAP by 30.3% on average.

IV. DISCUSSION AND FUTURE WORK

Our proposed algorithm for video subsampling shows
potential for embedded devices performing computer vision
tasks. It has the advantage of using a relatively
computationally cheap CNN for its detections, and it uses
predictive tracking so as to avoid frequently capturing
reference frames. A downside is that unless an application is
only interested in tracking objects that belong to the 20 classes

that Tiny YOLO (TY) was trained on, TY will need to be
trained on new data. Fortunately, TY is just the network we
happened to use. Any detector that returns bounding boxes for
objects of the class of interest will work, so long as the
embedded device has the resources to run the detector.
 In the future, we have several avenues for further study we
would like to explore. As previously mentioned, we want to
look into implementing adaptive Kalman filtering, which
involves adaptively adjusting the filter’s covariance matrices
to reduce tracking lag and jitteriness. Additionally, in its
current state the system can only handle having one object of
interest in the scene at a time. We wish to make it so that the
system maintains separate Kalman filters for every object in
the scene and can differentiate multiple objects. Finally,
during testing it became apparent that different prediction
phase lengths performed better or worse depending on the
video, so we plan on looking into adaptively changing the
number of predictions made per update.

REFERENCES
[1] R. LiKamWa, Z. Wang, A. Carroll, F. X. Lin, and L. Zhong, “Draining

our glass: An energy and heat characterization of google glass,” in Proc.
of 5th Asia-Pacific Workshop on Systems. ACM, 2014, p. 10.

[2] R. LiKamWa, B. Priyantha, M. Philipose, L. Zhong, and P. Bahl,
“Energy characterization and optimization of image sensing toward
continuous mobile vision,” in Proceeding of the 11th Annual
International Conference on Mobile Systems, Applications, and
Services. ACM, 2013, pp. 69–82.

[3] D. Mohan, S. Katoch, S. Jayasuriya, P. Turaga, and A. Spanias,
“Adaptive video subsampling for energy-efficient object detection.”

[4] N.Kovvali, M. Banavar, A. Spanias, An Introduction to Kalman
Filtering with MATLAB Examples, Morgan & Claypool Publi., Ed. J.
Mura, vol. 6, pp. 1-81, ISBN 13: 9781627051392, September 2013.

[5] G. Welch and G. Bishop, “An Introduction to the Kalman Filter,”
University of North Carolina, 24-Jul-2006. [Online]. Available:
https://www.cs.unc.edu/~welch/media/pdf/kalman_intro.pdf.
[Accessed: 08-Jul-2019].

[6] G. Czerniak, “Greg Czerniak's Website,” Greg Czerniak's Website -
Kalman Filters for Undergrads 1. [Online]. Available:
http://greg.czerniak.info/guides/kalman1/. [Accessed: 08-Jul-2019].

[7] Redmon, Joseph, Santosh Divvala, Ross Girshick, and Ali Farhadi.
"You only look once: Unified, real-time object detection." In
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 779-788. 2016.

[8] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature
hierarchies for accurate object detection and semantic segmentation. In
Computer Vision and Pattern Recognition(CVPR), 2014 IEEE
Conference on, pages 580–587. IEEE, 2014.

[9] “Visual Tracker Benchmark,” Visual Tracker Benchmark. [Online].
Available:
http://cvlab.hanyang.ac.kr/tracker_benchmark/datasets.html.
[Accessed: 09-Jul-2019].

[10] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z.
Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg and L. Fei-
Fei, "ImageNet Large Scale Visual Recognition Challenge,"
International Journal of Computer Vision (IJCV), vol. 115, no. 3, pp.
211-252, 2015.

[11] X. Li, T. Zhang, X. Shen and J. Sun, "Object Tracking using an
Adaptive Kalman Filter Combined with Mean Shift," Optical
Engineering, vol. 49, no. 2, p. 020503, 2010.

Figure 6. Graph of accuracy and energy savings for varying
levels of prediction. The optimal trade off point between
accuracy and power efficiency is at the 5 predictions level, with a
accuracy loss of 19.3% and an energy savings of 59%.

