Coding for MIMO Communication Systems

Coding for MIMO Communication Systems Tolga M. Duman and Ali Ghrayeb © 2007 John Wiley & Sons, Ltd. ISBN: 978-0-470-02809-4

Coding for MIMO Communication Systems

Tolga M. Duman

Arizona State University, USA

Ali Ghrayeb Concordia University, Canada

John Wiley & Sons, Ltd

John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England

Telephone (+44) 1243 779777

Email (for orders and customer service enquiries): cs-books@wiley.co.uk Visit our Home Page on www.wileyeurope.com or www.wiley.com

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except under the terms of the Copyright, Designs and Patents Act 1988 or under the terms of a licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham Court Road, London W1T 4LP, UK, without the permission in writing of the Publisher. Requests to the Publisher should be addressed to the Permissions Department, John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England, or emailed to permreq@wiley.co.uk, or faxed to (+44) 1243 770620.

This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold on the understanding that the Publisher is not engaged in rendering professional services. If professional advice or other expert assistance is required, the services of a competent professional should be sought.

Other Wiley Editorial Offices

John Wiley & Sons Inc., 111 River Street, Hoboken, NJ 07030, USA

Jossey-Bass, 989 Market Street, San Francisco, CA 94103-1741, USA

Wiley-VCH Verlag GmbH, Boschstr. 12, D-69469 Weinheim, Germany

John Wiley & Sons Australia Ltd, 42 McDougall Street, Milton, Queensland 4064, Australia

John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop #02-01, Jin Xing Distripark, Singapore 129809

John Wiley & Sons Canada Ltd, 6045 Freemont Blvd, Mississauga, Ontario, L5R 4J3, Canada

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

Anniversary Logo Design: Richard J. Pacifico

Library of Congress Cataloging-in-Publication Data

Duman, Tolga M.
Coding for MIMO communication systems / Tolga M. Duman, Ali Ghrayeb.
p. cm.
ISBN 978-0-470-02809-4 (cloth)
1. Space time codes. 2. MIMO systems. 3. Wireless communication systems.
I. Ghrayeb, Ali. II. Title.
TK5103.4877.D86 2007
621.3840285'572 - dc22

2007025115

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

ISBN 978-0-470-02809-4 (HB)

Typeset in 10/12pt Times by Laserwords Private Limited, Chennai, India Printed and bound in Great Britain by Antony Rowe Ltd, Chippenham, Wiltshire This book is printed on acid-free paper responsibly manufactured from sustainable forestry in which at least two trees are planted for each one used for paper production.

Contents

	Abo	ut the A	Authors					xi
	Preface List of Figures							xiii
								XV
	List	of Tab	les				2	xxiii
	Notation							xxv
	Abb	reviatio	viations					
1	Ove	rview						1
	1.1	Need 1	for MIMO Systems		•			1
	1.2	MIMC	O Communications in Wireless Standards		•			3
	1.3	Organ	ization of the Book	•		•	•	3
	1.4	Other	Topics in MIMO Systems	•	•	•	•	5
2	Fad	ing Cha	annels and Diversity Techniques					7
	2.1	Wirele	ess Channels		•			7
		2.1.1	Path Loss, Shadowing and Small-Scale Fading	•	•	•	•	9
		2.1.2	Fading Channel Models	•	•	•	•	10
	2.2	Error/	Outage Probabilities over Fading Channels	•	•	•	•	17
		2.2.1	Outage Probability for Rayleigh Fading Channels	•	•	•	•	17
		2.2.2	Average Error Probabilities over Rayleigh Fading Channels		•	•	•	18
		2.2.3	Extensions to Other Fading Channels	·	•	•	•	19
		2.2.4	Performance over Frequency Selective Fading Channels .	·	•	•	•	19
	2.3	Divers	ity Techniques	•	•	•	•	20
		2.3.1	Types of Diversity	•	•	•	•	21
		2.3.2	System Model for <i>L</i> th Order Diversity	•	•	•	•	22
		2.3.3	Maximal Ratio Combining (MRC)	•	•	•	•	23
		2.3.4	Suboptimal Combining Algorithms	•	•	•	•	26
		2.3.5	Selection Combining	•	•	•	•	27
		2.3.6	Examples					28

CON	TENTS
-----	-------

	2.4	Channel Coding as a Means of Time Diversity	28
		2.4.1 Block Coding over a Fully Interleaved Channel	30
		2.4.2 Convolutional Coding	34
	2.5	Multiple Antennas in Wireless Communications	35
		2.5.1 Receive Diversity	35
		2.5.2 Smart Antennas and Beamforming	35
		2.5.2 Shart Time Indo and Deannorming	37
	26	Chanter Summery and Eurther Deading	30
	2.0 Droh		20
	FIOU		39
3	Сар	acity and Information Rates of MIMO Channels	43
	3.1	Capacity and Information Rates of Noisy Channels	43
	3.2	Capacity and Information Rates of AWGN and Fading Channels	45
	0.2	3.2.1 AWGN Channels	45
		3.2.1 Fading Channels	46
	33	Canacity of MIMO Channels	50
	5.5	3 3 1 Deterministic MIMO Channels	51
		2.2.2 Errodia MIMO Channels	56
		3.3.2 Elgouic MIMO Channels	50
		3.3.5 Non-Ergodic MINO Channels and Outage Capacity	60
	~ .	3.3.4 Iransmit CSI for MIMO Fading Channels	62
	3.4	Constrained Signaling for MIMO Communications	64
	3.5	Discussion: Why Use MIMO Systems?	65
	3.6	Chapter Summary and Further Reading	67
	Prob	lems	68
1	Sno	a Time Block Codec	71
4		Transmit Diversity with Two Antonness The Alemouti Scheme	71
	4.1	11 Transmission Scheme	71
		4.1.1 Italishilission Scheme	72
		4.1.2 Optimal Receiver for the Alamouti Scheme	12
		4.1.3 Performance Analysis of the Alamouti Scheme	/6
		4.1.4 Examples	77
	4.2	Orthogonal Space-Time Block Codes	79
		4.2.1 Linear Orthogonal Designs	80
		4.2.2 Decoding of Linear Orthogonal Designs	82
		4.2.3 Performance Analysis of Space-Time Block Codes	84
		4.2.4 Examples	86
	4.3	Quasi-Orthogonal Space-Time Block Codes	87
	4.4	Linear Dispersion Codes	88
	4.5	Chapter Summary and Further Reading	90
	Prob	lems	90
_	~		
5	Spac	ce-Time Trellis Codes	93
5	Spa 5.1	ce-Time Trellis Codes A Simple Space-Time Trellis Code	93 93
5	Spac 5.1 5.2	Ce-Time Trellis Codes A Simple Space-Time Trellis Code General Space-Time Trellis Codes	93 93 94
5	Spac 5.1 5.2	Ce-Time Trellis Codes A Simple Space-Time Trellis Code General Space-Time Trellis Codes 5.2.1 Notation and Preliminaries	93 93 94 95
5	Spac 5.1 5.2	Ce-Time Trellis Codes A Simple Space-Time Trellis Codes General Space-Time Trellis Codes 5.2.1 Notation and Preliminaries 5.2.2 Decoding of Space-Time Trellis Codes	93 93 94 95 96

		5.3.1	Pairwise Error Probability	. 97
		5.3.2	Space-Time Code Design Principles	. 99
		5.3.3	Examples of Good Space-Time Codes	. 101
		5.3.4	Space-Time Trellis Codes for Fast Fading Channels	. 104
	5.4	Repres	sentation of Space-Time Trellis Codes for PSK Constellations	. 107
		5.4.1	Generator Matrix Representation	. 107
		5.4.2	Improved Space-Time Code Design	. 108
	5.5	Perform	mance Analysis for Space-Time Trellis Codes	. 109
		5.5.1	Union Bound for Space-Time Trellis Codes	. 110
		5.5.2	Useful Performance Bounds for Space-Time Trellis Codes	. 113
		5.5.3	Examples	. 118
	5.6	Compa	arison of Space-Time Block and Trellis Codes	. 120
	5.7	Chapte	er Summary and Further Reading	. 121
	Prob	lems		. 122
	-	10		100
6		ered Sp	ace-lime Codes	123
	0.1	Basic	Bell Laboratories Layered Space-Time (BLAST) Architectures	. 124
		0.1.1	VBLASI/HBLASI/SUBLASI	124
		0.1.2	Detection Algorithms for Basic BLAST Architectures	. 125
	67	0.1.3 Diagon	Examples	. 131
	0.2		Detection Algorithms for DRLAST	136
		622	Examples	140
	63	0.2.2 Multil	examples	. 140
	0.5	631	Fncoder Structure	. 142
		632	Group Interference Cancellation Detection	143
		633	Example	145
	6.4	Thread	led Snace-Time Codes	. 146
		6.4.1	Lavering Approach	. 147
		6.4.2	Threaded Space-Time Code Design	. 148
		6.4.3	Example	. 150
		6.4.4	Detection of Threaded Space-Time Codes	. 151
	6.5	Other	Detection Algorithms for Spatial Multiplexing Systems	. 151
		6.5.1	Greedy Detection	. 152
		6.5.2	Belief Propagation Detection	. 152
		6.5.3	Turbo-BLAST Detection	. 153
		6.5.4	Reduced Complexity ZF/MMSE Detection	. 153
		6.5.5	Sphere Decoding	. 153
	6.6	Divers	ity/Multiplexing Gain Trade-off	. 154
	6.7	Chapte	er Summary and Further Reading	. 158
	Prob	lems		. 158
7	Con	catenat	ed Codes and Iterative Decoding	161
•	7.1	Develo	oppment of Concatenated Codes	. 161
	7.2	Concat	tenated Codes for AWGN Channels	. 163
	. –	7.2.1	Encoder Structures	. 163
		7.2.2	Iterative Decoder Structures	. 165

CONTENTS

		7.2.3 The SOVA Decoder	176
		7.2.4 Performance with Maximum Likelihood Decoding	181
		7.2.5 Examples	183
	7.3	Concatenated Codes for MIMO Channels	186
		7.3.1 Concatenated Space-Time Turbo Coding Scheme	187
		7.3.2 Turbo Space-Time Trellis Coding Scheme	188
		7.3.3 Turbo Space-Time Coding Scheme	189
	7.4	Turbo-Coded Modulation for MIMO Channels	190
		7.4.1 Encoder Structure	190
		7.4.2 Decoder Structure	191
		7.4.3 Examples	194
	7.5	Concatenated Space-Time Block Coding	195
		7.5.1 Encoder Structure	196
		7.5.2 Decoder Structure	196
		7.5.3 Performance Analysis	197
		7.5.4 Examples	201
	7.6	Chapter Summary and Further Reading	204
	Prob	lems	204
8	Unit	ary and Differential Space-Time Codes	207
	8.1	Capacity of Noncoherent MIMO Channels	208
		8.1.1 Channel Capacity	209
	0.0	8.1.2 Capacity Achieving Signals	211
	8.2	Unitary Space-Time Codes	211
		8.2.1 USIC Encoder	211
		8.2.2 ML Detection of USICs	212
		8.2.3 Performance Analysis	213
		8.2.4 Construction of Unitary Space-Time Signals	214
	0.2	8.2.5 Examples	221
	8.3	Differential Space-Time Codes	221
		8.3.1 Differential Space-Time Coding for Single Antenna Systems	221
	0 /	6.5.2 Differential Space-Time Coding for MINIO Systems	224
	0.4	10100-Could Unitary Space-Time Coulds	220
		8.4.1 Elicodel Suuciale	229
		8.4.2 Nonconcretent heralive Decoder	229
	05	0.4.5 Example	232
	0.J 8.6	Turbo Coded Differential Space Time Codes	235
	0.0	8.6.1 Encoder Structure	235
		8.6.2 Iterative Detectors	235
	87	Chapter Summary and Further Reading	230
	Proh	lems	238
	1100		_50
9	Spa	ce-Time Coding for Frequency Selective Fading Channels	239
	9.1	MIMO Frequency Selective Channels	239
	9.2	Capacity and Information Rates of MIMO Frequency Selective Fading	
		Channels	240

CONT	FENTS
------	--------------

		9.2.1	Information Rates with Gaussian Inputs	 240
		9.2.2	Achievable Information Rates with Practical Constellations .	 241
		9.2.3	Examples	 245
	9.3	Space-	Time Coding for MIMO FS Channels	 247
		9.3.1	Interpretation of MIMO FS Channels Using Virtual Antennas	 247
		9.3.2	A Simple Full Diversity Code for MIMO FS Channels	 249
		9.3.3	Space-Time Trellis Codes for MIMO FS Channels	 250
		9.3.4	Concatenated Coding for MIMO FS Channels	 253
		9.3.5	Spatial Multiplexing for MIMO FS Channels	 257
	9.4	Channe	el Detection for MIMO FS Channels	 257
		9.4.1	Linear Equalization for MIMO FS Channels	 258
		9.4.2	Decision Feedback Equalization for MIMO FS Channels	 258
		9.4.3	Soft-Input Soft-Output Channel Detection	 258
		9.4.4	Other Reduced Complexity Approaches	 259
	9.5	MIMO	OFDM Systems	 260
		9.5.1	MIMO-OFDM Channel Model	 261
		9.5.2	Space-Frequency Coding	 262
		9.5.3	Challenges in MIMO-OFDM	 263
	9.6	Chapte	r Summary and Further Reading	 263
	Prob	lems	· · · · · · · · · · · · · · · · · · ·	 264
10	Prac	tical Is	sues in MIMO Communications	267
	10.1	Channe	el State Information Estimation	 267
		10.1.1	CSI Estimation Using Pilot Tones	 268
		10.1.2	What to Do with CSI?	 271
		10.1.3	Space-Time Coding Examples with Estimated CSI	 272
	10.2	Spatial	Channel Correlation for MIMO Systems	 273
		10.2.1	Measurements and Modeling of Spatial Correlation	 275
		10.2.2	Spatial Channel Correlation Models	 276
		10.2.3	Channel Capacity with Spatial Correlation	 277
		10.2.4	Space-Time Code Performance with Spatial Correlation	 279
	10.3	Tempo	ral Channel Correlation	 281
	10.4	MIMO	Communication System Design Issues	 283
	10.5	Chapte	r Summary and Further Reading	 284
	Prob	lems		 285
11	Ante	enna Se	lection for MIMO Systems	287
	11.1	Capaci	ty-based Antenna Selection	 287
		11.1.1	System Model	 288
		11.1.2	Optimal Selection	 289
		11.1.3	Simplified (Suboptimal) Selection	 290
		11.1.4	Examples	 290
	11.2	Energy	r-based Antenna Selection	 292
	11.3	Antenn	a Selection for Space-Time Trellis Codes	 293
		11.3.1	Quasi-Static Fading Channels	 293
		11.3.2	Block Fading Channels	 295

CONTENTS

	11.3.3 Fast Fading Channels	298
	11.3.4 Examples	299
11.4	Antenna Selection for Space-Time Block Codes	302
	11.4.1 Receive Antenna Selection	302
	11.4.2 Transmit Antenna Selection	304
	11.4.3 Examples	304
11.5	Antenna Selection for Combined Channel Coding and Orthogonal STBCs	306
	11.5.1 Performance Analysis	306
	11.5.2 Examples	307
11.6	Antenna Selection for Frequency Selective Channels	310
11.7	Antenna Selection with Nonidealities	311
	11.7.1 Impact of Spatial Correlation	311
	11.7.2 Example	312
	11.7.3 Impact of Channel Estimation Error	312
11.8	Chapter Summary and Further Reading	313
Prob	ems	314
Bibli	graphy	317
Inde		333

Х

About the Authors

Tolga M. Duman

Tolga M. Duman received the B.S. degree from Bilkent University, Ankara, Turkey, in 1993, M.S. and Ph.D. degrees from Northeastern University, Boston, in 1995 and 1998, respectively, all in electrical engineering. Since August 1998, he has been with the Electrical Engineering Department of Arizona State University, first as an Assistant Professor (1998–2004), and currently as an Associate Professor. He spent the 2004–05 academic year as a visiting associate professor at Bilkent University in Turkey. Dr. Duman's current research interests are in digital communications, wireless and mobile communications, MIMO systems, channel coding, underwater acoustic communications, and applications of coding to wireless and recording channels.

Dr. Duman is a recipient of the National Science Foundation CAREER Award and IEEE Third Millennium medal. He is a senior member of IEEE, and an editor for *IEEE Transactions on Wireless Communications* and *IEEE Transactions on Communications*.

Ali Ghrayeb

Ali Ghrayeb received the Ph.D. degree in electrical engineering from the University of Arizona, Tucson, AZ, in May 2000. He is currently an Associate Professor in the Department of Electrical and Computer Engineering, Concordia University, Montreal, Canada. He holds a Concordia Research Chair in High-Speed Wireless Communications. His research interests are in wireless and mobile communications, wireless networks, and coding and signal processing for data transmission and storage. He has co-instructed technical tutorials and short courses on Coding for MIMO Systems and on Synchronization for WCDMA Systems at several major IEEE conferences. He serves as an Associate Editor for *IEEE Transactions on Vehicular Technology* and *Wiley Wireless Communications and Mobile Computing Journal*.

Preface

Employing multiple transmit and receive antennas, namely using multi-input multi-output (MIMO) systems, has proven to be a major breakthrough in providing reliable wireless communication links. Since their invention in the mid-1990s, transmit diversity, achieved through space-time coding, and spatial multiplexing schemes have been the focus of much research in the area of wireless communications. Although many significant advancements have been made recently in MIMO communications, there is still much ongoing research in this area. Parallel to that, communication companies have already started looking into integrating MIMO systems in their current and future wireless communication systems. In fact, several standards for future wireless communication applications have already adopted MIMO systems as an option.

This book is intended to provide a comprehensive coverage of coding techniques for MIMO communication systems. The contents of this book have evolved over the past several years as a result of our own research in MIMO communications, and the tutorials and short courses we have given at several conferences (including IEEE International Conference on Communications (ICC), Global Telecommunications Conference (GLOBECOM), Vehicular Technology Conference (VTC), and Wireless Communications and Networking Conference (WCNC)). The feedback we have received motivated us to write this book in order to address the fundamentals of MIMO communications in an accessible manner.

At this time, several books have been published on MIMO systems. However, there are a number of factors that differentiate this book from the existing ones. First, we try to stay away from including very complicated derivations, mathematical expressions, and very specific systems. Instead, we focus more on the fundamental issues pertaining to MIMO systems. We use language that is easy to comprehend for a wide audience interested in this topic, including starting graduate or senior undergraduate students majoring in electrical engineering with some limited training in digital communications and probability theory. For certain topics, we present more details with some derivations in an effort to accommodate the needs of a more specific group of researchers or advanced graduate students. However, the book is organized in such a way that these subjects are easy to spot, and thus, these should not overwhelm the rest of the audience. Another major factor that differentiates this book from other books is the breadth of coverage of topics. For instance, in addition to our coverage of basic MIMO communication algorithms, such as space-time block codes, space-time trellis codes, unitary and differential signaling and spatial multiplexing schemes, we include a detailed coverage of turbo codes and iterative decoding for MIMO systems, antenna selection algorithms, practical issues such as spatial correlation and channel estimation, as well as MIMO systems for frequency selective fading channels. Finally, we provide numerous examples - some elementary, some more advanced - on various topics covered, and a large number of references on MIMO communications at the end of each chapter.

Audience

The primary audience of this book is senior undergraduate students, graduate students, practitioners and researchers who are interested in learning more about MIMO systems, or perhaps would like to get into this area of research. For the audience to get the full benefits of the book, it is recommended that they have some background in digital communications, linear algebra and probability theory.

Although this book is intended primarily for researchers and practitioners, it can also be adopted as a textbook for a graduate level, or an advanced undergraduate level, course on "Wireless MIMO Communications." The language, organization, and flow of the material should make this easy. The material could be covered in a one-semester course. In order to facilitate its use as a textbook, the book is also complemented with a set of problems at the end of each chapter which serve the purpose of making the main topics covered in each chapter more clear, and shedding some light on certain aspects that are not provided in detail in the text.

Acknowledgments

We thank the National Science Foundation of the United States and the Natural Sciences and Engineering Research Council of Canada for providing us with research funding in the area of MIMO communications over the past several years which enabled our collaboration on the subject, and made this project possible. Furthermore, we have received help from many individuals in completing this work. In particular, we appreciate the help we received from our former and current students in generating many of the figures throughout the book, and numerous suggestions they have provided. Tolga M. Duman wishes to thank Jun Hu, Subhadeep Roy, Mustafa N. Kaynak, Israfil Bahceci, Andrej Stefanov, Zheng Zhang, Vinod Kandasamy, Yunus Emre, Tansal Gucluoglu, and Renato Machado. Ali Ghrayeb would like to thank Xian Nian Zeng, Abdollah Sanei, Chuan Xiu Huang, Hao Shen, May Gomaa, Jeyadeepan Jeganathan and Ghaleb Al Habian. In addition, we would like to express our gratitude to John G. Proakis, Masoud Salehi, William E. Ryan, Cihan Tepedepenlioglu, Junshan Zhang and Walaa Hamouda for their feedback on various drafts of the book.

Finally, Tolga M. Duman would like to thank his wife, Dilek, for her understanding, love and support. Ali Ghrayeb wishes to express his gratitude to his wife, Rola, and his sons Adam and Mohamed for their continuous support, encouragement, patience and love throughout the course of writing this book.

Tolga M. Duman, Arizona State University

Ali Ghrayeb, Concordia University

List of Figures

2.1	Illustration of the wireless propagation mechanisms.	8
2.2	Effect of path loss and shadowing on the received signal power	10
2.3	Received power when small-scale fading is also taken into account.	10
2.4	A typical scattering function.	13
2.5	Frequency flat versus frequency selective fading (in the frequency domain).	13
2.6	Illustration of frequency selective fading in the time domain.	14
2.7	Error rates of BPSK modulation over Rayleigh and Rician fading channels.	19
2.8	Error rates of BPSK modulation over several frequency selective fading	
	channels.	20
2.9	Illustration of time and frequency diversity techniques.	21
2.10	Spatial diversity scheme.	22
2.11	Channel model for an <i>L</i> th order diversity scheme.	23
2.12	Outage probability of MRC and SC over a Rayleigh fading channel	
	(assuming minimum acceptable signal-to-noise ratio is 0 dB).	29
2.13	Average error probability of binary DPSK with MRC and SC over a	
	Rayleigh fading channel.	29
2.14	Coding over a wireless channel.	30
2.15	An example of a convolutional code with generators (21, 37) _{octal}	34
2.16	A simple ad-hoc network illustration.	36
2.17	Illustration of beamforming being used for improving signal-to-noise	
	ratio and reducing interference.	36
2.18	Multiple antennas being used for beamforming.	38
2.19	Multiple antennas being used for space-time coding or spatial multiplexing.	38
2.20	Figure for Problem 2.4.	40
3.1	Generic block diagram for a channel coded communication system	44
3.2	Capacity and information rates for several modulation schemes over	
	AWGN channels.	46
3.3	Capacity and information rates for several modulation schemes over	
	ergodic Rayleigh fading channels.	48
3.4	Outage capacity and information rates for quasi-static Rayleigh fading	
	channels.	49
3.5	Generic block diagram for a channel coded MIMO communication system.	50
3.6	Capacity of the channel H_1 .	55
3.7	Capacity of the channel H_2 .	56
3.8	Ergodic capacity of MIMO Rayleigh fading channels with $N_t = 1$	59
3.9	Ergodic capacity of MIMO Rayleigh fading channels with $N_r = 1$	59

3.10	Ergodic capacity of MIMO Rayleigh fading channels with equal number of transmit and receive antennas		60
3.11	Outage probability of MIMO Rayleigh fading channels for several	•	00
2 1 2	scenarios.	·	62
3.12	number of antennas for 1% outage probability.		63
3.13	Outage capacity of MIMO Rayleigh fading channels as a function of the number of antennas for 10% outage probability		63
3.14	Capacity and information rates for an ergodic Rayleigh fading MIMO	•	05
3.15	system with two transmit and two receive antennas	•	65
3.16	System with four transmit and four receive antennas	•	00 66
3.17	Outage information rates for $P_{out} = 1\%$ for quasi-static Rayleigh fading as a function of $N_t = N_r = n$).		67
4.1	The Alamouti scheme.		72
4.2	Bit error rate performance of the Alamouti scheme with BPSK modula-		
	tion (simulation and bound).		78
4.3	Symbol error rate performance of the Alamouti scheme with 8-PSK mod-		
	ulation (simulation and bound).		78
4.4	Bit error rate of X_1 with BPSK modulation.		86
4.5	Symbol error rate of X_2 with QPSK modulation.		87
5.1	A four-state space-time trellis code example.		94
5.2	Eight-state and 16-state space-time trellis codes using 4-PSK modulation (2 bits per channel use)		102
5.3	Eight-state space-time trellis code using 8-PSK modulation (3 bits per channel use).	•	102
5.4	Outage probability and frame error rates of several space-time trellis codes with QPSK (quasi-static fading, two transmit and one receive		102
	antennas).		103
5.5	Outage probability and frame error rates of several space-time trellis codes with QPSK (quasi-static fading, two transmit and two receive		
5 (antennas).	•	104
5.0	and two receive antennas).		105
5.7	Bit error rate results for four-, eight- and 16-state space-time trellis codes over fully interleaved Rayleigh fading channels (two transmit and one		
	receive antennas).	·	106
5.8	Frame error rate bound and simulation results for fast fading (two transmit and one receive antennas).		112
5.9	Simple versus compound error events.		114
5.10	Two-state space-time trellis code with BPSK modulation and its extended		
	state diagram for bound computation.		117
5.11	Four-state space-time trellis code with 4-PSK modulation (by Yan and		
	Blum)		118

LIST OF FIGURES

5.12	Frame error rate bound and simulation results for quasi-static fading with	110
	a frame length of 130 (two transmit and two receive antennas).	. 119
5.13	Frame error rate bound and simulation results for quasi-static fading with	
	a frame length of 130 (two transmit and three receive antennas)	. 119
5.14	Frame error rate comparison of the Alamouti scheme with several space-	
	time trellis codes (two transmit and one receive antennas, 2 bits per	
	channel use).	. 120
5.15	Frame error rate comparison of the Alamouti scheme with several space-	
	time trellis codes (two transmit and two receive antennas, 2 bits per	
	channel use)	. 121
6.1	VBLAST encoder structure (Π_i denotes the interleaver corresponding to	
	the <i>i</i> th layer). \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots	. 124
6.2	HBLAST encoder structure.	. 125
6.3	SCBLAST encoder structure.	. 125
6.4	VBLAST bit error rate performance with various detection criteria for	
	$N_t = N_r = 4$ with uncoded BPSK	132
6.5	VBLAST bit error rate performance for $N_t = N_r = 4$ for the four layers	
	using the ZF-IC criterion (for uncoded BPSK).	. 133
6.6	VBLAST bit error rate performance for $N_t = N_r = 4$ using the ZF-IC	
	criterion with and without sorting (for uncoded BPSK).	. 133
6.7	HBLAST bit error rate performance with various detection criteria for	
	$N_t = N_r = 4$ and BPSK signaling.	134
6.8	SCBLAST bit error rate performance with various detection criteria for	
0.0	$N_{\rm c} = N_{\rm c} = 4$ and BPSK signaling	134
69	DBLAST encoder structure	135
6.10	Illustration of the DBLAST transmission	135
6.11	DBLAST bit error rate performance with various detection criteria for	100
0.11	$N_{\rm c} = N_{\rm c} = 4$ and uncoded BPSK	141
612	$D_{I} = M_{F} = 1$ and uncoded DISK. $D_{I} = 1$ and $D_{I} $	
0.12	$N_{\rm c} = N_{\rm c} = 4$ and uncoded BPSK	141
613	$M_l = M_r = 4$ and uncoded DISK	142
6.14	MESTC bit error rate performance for a 4×4 MIMO system employing	. 142
0.14	with strength of the performance for $a + x + with two system employing orthogonal STRCs as component ordes with two transmit antennas per$	
	group	146
6 1 5	group	140
0.15	Layering in uncaded space-time county.	. 14/
0.10	MIMO systems	151
6 17	MIMO systems.	151
0.17	Dispute (and the first of the f	154
6.18	Diversity/multiplexing trade-off for the Alamouti scheme and the optimal $trade off$ some $(N_{\rm eff})^2$ as because $f(N_{\rm eff})^2$.	150
6.10	trade-off curve ($N_r = 2$, conference time ≥ 3).	150
6.19	Diversity/multiplexing trade-off for the VBLAST scheme (with and with-	1.5.5
7 1	out sorting in the detection process) and the optimal trade-off curve	157
/.1	PULL encoder structure.	163
1.2	A typical SCCC encoder structure.	164
7.3	Rate 1/3 PCCC encoder structure.	170
1.4	PCCC iterative decoder structure.	. 171

7.5	Rate 1/4 SCCC encoder structure.		173
7.6	SCCC iterative decoder structure.		174
7.7	Illustration of obtaining the SOVA output for bit b_k		178
7.8	Structure of the MSOVA.		179
7.9	Bit error rate performance of the PCCC system for different code rates		
	and number of decoder iterations over an AWGN channel. The interleaver		
	length used is $N = 4096$. The iterative decoder employs two identical		
	log-APP algorithms.		183
7.10	Bit error rate performance of the PCCC system for different code rates		
	and different number of decoder iterations over an AWGN channel. The		
	interleaver length used is $N = 4096$. The iterative decoder employs two		
	identical SOVA algorithms. A decoding depth of $\delta = 50$ is used		184
7.11	Bit error rate performance comparison of the SOVA, MSOVA, APP and		
	MAPP decoders in AWGN for the SCCC scheme using a convolutional		
	code with generator polynomials $(5, 7)_{octal}$, a differential encoder for the		
	inner code, overall rate $1/2$, and $N = 512$ with eight iterations		185
7.12	Bit error rate performance comparison of the SOVA, MSOVA, APP and		
	MAPP decoders in AWGN for the PCCC scheme using 16-state RSC		
	encoders, overall rate $4/5$, $N = 512$, and eight iterations	•	186
7.13	Parallel concatenated space-time turbo code encoder (for two transmit		
	antennas).	•	188
7.14	Encoder structure for the serial concatenated space-time turbo code	•	188
7.15	Encoder structure for the serial concatenation of an outer channel code		
	and an inner recursive space-time code.	•	189
7.16	Encoder structure for the turbo-TCM scheme (Π denotes a symbol		
	interleaver).	·	189
7.17	Encoder structure for the turbo-coded modulation scheme	·	190
7.18	Iterative decoder structure for the turbo-coded modulation scheme	•	192
7.19	Bit error rate performance comparison between the TuCM and STTC		
	schemes for $N_t = 2$, $N_r = 1$ with block lengths 1300 and 5200	·	194
7.20	Frame error rate performance comparison between iterative demodula-		105
7.01	tion/decoding and iterative decoding only.	·	195
7.21	Encoder structure for the coded STBC scheme. (Π_1 denotes a bit inter-		107
7.00	leaver whereas Π_2 denotes a symbol interleaver.)	·	196
7.22	Decoder structure for the coded STBC scheme.	·	196
1.23	Bit error rate performance for the convolutional coded STBC scheme on		
	an ideality interleaved channel with BPSK modulation for $N_t = 2$ and $N_t = 1, 2, 2$		202
7.24	$N_r = 1, 2, 3$.	·	202
1.24	fading channels without interleaving		202
7 25	Bit error performance of a rate 2/3 4 state TCM coded STRC system	·	202
1.23	on an ideally interleaved channel for $N = 2$, $N = 1, 2, 3$		203
7 26	Bit error rate performance comparison between the convolutional coded	·	203
1.20	STRC and uncoded STRC systems with 8 DSK modulation for $M = 2$		
	and $N = 1.3$ Both soft and hard decision decoding are considered		203
	and $m_r = 1, 5$. Both soft and hard decision decoding are considered.	•	205

LIST OF FIGURES

8.1	Capacity comparisons of an $N_t = N_r = 8$ MIMO channel for the coher- ent and noncoherent cases with $T = 16$ and 40	210
82	LISTC encoder	210
83	Correlation of the signals defined by (8.20) as a function of $ k' - k $ for	211
0.5	T = 6 and $L = 64$ resulting from nicking the first six columns of the	
	$T = 0$ and $L = 04$ resulting from picking the first six columns of the 64×64 DFT matrix	216
84	Correlation of the signals defined by (8.20) as a function of $ k' - k $ for	210
0.4	T = 6 and $L = 64$ generated according to (8.23) (with Q generated by	
	T = 0 and $E = 04$ generated according to (0.25) (with 32 generated by random selection)	217
85	Correlation of the signals defined by (8.20) as a function of $ k' - k $ for	217
0.5	the $N_{\rm c} = 3$ case with $T = 6$ and $L = 64$. These signals resulted from	
	nicking the first six columns of the 64×64 DFT matrix	210
86	Correlation of the signals defined by (8.20) as a function of $ k' - k $ for	21)
0.0	the $N_{\rm c} = 3$ case with $T = 6$ and $L = 64$. These signals are generated	
	according to $(8, 23)$ (with 9 generated by random selection)	219
87	Bit error rate performance of a USTC with parameters $I = 64$ and $T = 6$	21)
0.7	for $N_{c} = 1, 2, 3$ and $N_{c} = 1$	220
88	Bit error rate performance comparison between the coherent and nonco-	220
0.0	herent receivers for a USTC with $L = 64$ and $T = 6$ for $N_{\rm c} = 1$	220
89	DPSK modulator	220
8 10	Bit error rate performance comparison between coherent and differential	221
0.10	detection for the differential BPSK scheme with $N_{\rm c} = N_{\rm c} = 1$	223
8 1 1	Bit error rate performance for the DSTC example for the overlap case	223
0.11	using coherent and noncoherent detection	228
8 1 2	Bit error rate performance for the DSTC example for the non-overlap	220
0.12	case using coherent and noncoherent detection	229
8 13	TC-USTC encoder	230
8 14	Noncoherent iterative TC-USTC decoder	230
8.15	Performance of the TC-USTC scheme with various interleaver sizes	230
8.16	Block diagram of the trellis-coded unitary signaling scheme	232
8 17	Bit error rate performance comparison between TCM coded and uncoded	255
0.17	unitary space-time systems with $N_{\rm c} = 2$ and $N_{\rm c} = 1$ The signal constel-	
	lation size for the coded system is $L = 16$ and it is $L = 8$ for the uncoded	
	system, thus achieving a spectral efficiency of $3/8$ bits per channel use.	234
8 18	TC-DSTC encoder	235
8.19	Differential TC-DSTC detector.	236
8.20	Near-differential TC-DSTC detector.	237
9.1	Information rates with BPSK over ergodic MIMO FS channels with two	
<i>,</i> ,,,	transmit and two receive antennas.	245
9.2	Gaussian input outage capacity and outage information rates with BPSK	
	modulation for quasi-static MIMO FS channels with two transmit and	
	two receive antennas (10% outage level).	246
9.3	Ergodic BPSK information rates for MIMO FS channels (with two equal	
	average power taps) as a function of $N_t = N_r = n$.	246
9.4	Virtual antenna interpretation of transmission over MIMO FS channels	
	(with $N_t = 2$ and $L = 3$).	249

9.5	Block diagram of space-time trellis coding over a MIMO FS channel.	251
9.0	a two-input two-tap FS channel.	. 252
9.7	Bit error rates of two convolutional codes with BPSK over quasi-static MIMO FS channels (with two transmit and one receive antennas).	253
9.8	Bit error rates of two convolutional codes with BPSK over quasi-static MIMO FS channels (with two transmit antennas and	
	two receive antennas).	. 254
9.9	Block diagram of the concatenated coding approach.	255
9.10	Bit error rates of $(5, 7)_{octal}$ convolutional code with BPSK concatenated with a three-tap quasi-static MIMO FS channel (with two transmit antennas).	256
9.11	Bit error rates of $(5, 7)_{octal}$ convolutional code with QPSK modulation concatenated with a three-tap quasi-static MIMO FS channel (with two	
	transmit antennas).	256
9.12	Block diagram of a MIMO-DFE.	. 259
9.13	Illustration of multi-carrier communications in the frequency domain.	. 260
9.14	Block diagram of a MIMO-OFDM system.	261
10.1	Effects of CSI estimation on the performance of the Alamouti scheme using QPSK.	. 272
10.2	Effects of CSI estimation on the performance of an orthogonal space-time block code with BPSK ($N_t = 4$).	273
10.3	Effects of CSI estimation on the performance of an STTC ($N_t = 2$ and	
	$N_r = 1$).	274
10.4	Effects of CSI estimation on the performance of an STTC $(N_{\rm e} = N_{\rm e} = 2)$	274
10.5	Ergodic capacity for a two transmit antenna system with spatial channel correlation. For $N_r = 1$, $r = 0$, 0.8, 0.95, and for $N_r = 2$, $r = 0$, 0.5, 0.8, 0.95 are used	200
10.6	Freedic capacity of ninhole channel as a function of number of antennas	280
10.0	$(N_t = N_r = n).$. 280
10.7	Symbol error rate of the Alamouti scheme with channel correlation (for one and two receive antennas).	281
10.8	Space-time trellis code performance with channel correlation (two trans- mit and one receive antennas)	282
10.9	Space-time trellis code performance with channel correlation (two trans-	202
	mit and two receive antennas).	. 282
11.1	Generic MIMO system model with antenna selection.	288
11.2	The cumulative distribution function of the capacity for a MIMO channel with $N_t = 3$, $N_r = 5$, and $L_r = 1, 2, 3, 4$ at a signal-to-noise ratio of 20	
	dB. Exhaustive search is performed to find the best L_r antennas	. 291
11.3	The cumulative distribution function of the capacity for a MIMO channel with $N_t = 3$, $N_r = 1$, 3, 5, and $L_r = 1$, 3 at a signal-to-noise ratio of 20 dB. Exhaustive search, where applicable, is performed to find the best	
	L_r antennas.	. 291

LIST OF FIGURES

11.4	The cumulative distribution function of the capacity for an $N_t = 3$, $N_r = 5$ MIMO channel at a signal-to-noise ratio of 20 dB with receive antenna selection where selection is performed using the energy-based and		
	capacity-based selection criteria.		293
11.5	Frame error rate performance of the four-state, QPSK STTC presented in Chapter 5 over quasi-static fading for $N_t = 2$, $N_r = 1, 2, 3$ with receive antenna selection where $I_r = 1, 2, 3$		300
11.6	Frame error rate performance of the STTC considered in Figure 11.5 over fast fading for $N_t = 2$, $N_r = 1, 2, 3$ with receive antenna selection	•	500
	where $L_r = 1, 2, 3$	•	301
11.7	Frame error rate performance for the four-state, QPSK STTC in quasi- static fading for $N_t = 2, 4, 6, N_r = 1$ with $L_t = 2, \dots, \dots$		301
11.8	Bit error rate performance for the Alamouti scheme with receive antenna selection for the cases with $N_{\rm e} = 3$ and $L_{\rm e} = 1, 2, 3$		305
11.9	Bit error rate performance for the Almouti scheme with receive antenna selection for the cases with $N_r = 2, 3$ and $L_r = 1, 2, 3$ along with their	•	500
	exact theoretical results given by (11.36).	•	305
11.10	Bit error rate performance of the Alamouti scheme with transmit antenna selection for the cases $N_t = 2, 4, 6, N_r = 1$ and $L_t = 2, \dots, \dots$		306
11.11	Bit error rate performance comparison between various antenna selection scenarios along with their upper bounds (for the convolutional code)		308
11.12	Bit error rate performance comparison between various antenna selection	•	200
11.12	scenarios along with their upper bounds (for the TCM case).	•	309
11.13	bounds for the cases with $N_t = 2$, $N_r = 3$, $L_r = 1$, 3 (for the		
	TCM case).	•	309
11.14	Frame error rate performance for a coded system with receive antenna selection over frequency selective fading.		310
11.15	Frame error rate performance with receive antenna selection over spa-		
	tially correlated Rayleigh fading.		313

xxi

List of Tables

6.1	The ZF-IC algorithm for the VBLAST/HBLAST/SCBLAST schemes	128
6.2	The MMSE-IC algorithm for the VBLAST/HBLAST/SCBLAST schemes	131
6.3	The ZF-IC detection algorithm for the DBLAST scheme	139
6.4	The MMSE-IC detection algorithm for the DBLAST scheme	140
7.1	Values of c and d for various PCCCs and SCCCs for the	
	MSOVA algorithm.	180
11.1	Values of the constant $f(N_t, N_r, L_r)$ for specific values of N_t	299
11.2	Diversity order of STTCs with antenna selection for various Rayleigh	
	fading channel models	299

Notation

\approx	approximately equal to
	defined as equal to
≫	much greater than
«	much less than
	multiplication operator
$\arg\max_{x} [f(x)]$	the value of x that maximizes the function $f(x)$
$\arg\min_{x} [f(x)]$	the value of x that minimizes the function $f(x)$
$\exp(x)$	exponential of x (i.e., e^x)
$Im\{x\}$	the imaginary part of x
$\operatorname{Re}\{x\}$	the real part of x
Q(x)	Gaussian <i>Q</i> -function $\left(\frac{1}{\sqrt{2\pi}}\int_x^\infty e^{-t^2/2}dt\right)$
\mathbb{R}	the field of all real numbers
$X \sim p_X(x)$	the random variable X has p.d.f. $p_X(x)$
E[X]	the expected value of random variable X
H(X)	the entropy of random variable X
H(Y X)	the conditional entropy of random variable Y given random variable X
$I(X \cdot Y)$	the mutual information between random variables X and Y
x	the absolute value of the complex number x
$\angle x$	the angle of the complex number x
x*	the conjugate of a scalar or vector quantity
x	the vector x
$\ x\ $	the norm of vector x
\mathbf{x}^{T}	the transpose of vector \boldsymbol{x}
x^H	the Hermitian (conjugate transpose) of vector \mathbf{x}
A	the matrix A
A^T	the transpose of matrix A
A^H	the Hermitian (conjugate transpose) of matrix A
A^*	the conjugate of matrix A
A^{-1}	the inverse of matrix A
$\ A\ $	the Frobenius norm of the matrix A (i.e., sum of
	absolute value squares of all the entries of A)
det(A)	the determinant of matrix A
trace(A)	the trace of matrix A

I_N	the $N \times N$ identity matrix
0_N	the $N \times N$ all zero matrix
$0_{M imes N}$	the $M \times N$ all zero matrix
$diag\{a_1, a_2,, a_N\}$	the diagonal matrix with elements a_1, a_2, \ldots, a_N on the
	main diagonal
N_t	number of transmit antennas
N_r	number of receive antennas
$h_{i,j}$	channel coefficient between the <i>i</i> th transmit and <i>j</i> th receive
	antennas
$h^{(l)}(k)$	ISI channel coefficient for the l th tap at time k
$h_{i,i}^{(l)}(k)$	channel coefficient from the <i>i</i> th antenna to the <i>j</i> th antenna
*,5	at time k for the lth channel tap
Н	MIMO channel matrix
X	transmitted signal
Y	received signal
Ν	AWGN noise
ρ	average signal-to-noise ratio at each receive antenna
L	number of intersymbol interference taps
L_r	number of selected antennas at the receiver side
L_t	number of selected antennas at the transmitter side
R_c	code rate
P_b	bit error probability
P_e	probability of error
Т	coherence time in number of symbols
Ν	frame length at each transmit antenna
$\log_x \det[A]$	the log, base x , of the determinant of matrix A
$\operatorname{sinc}(x)$	the sinc function $(\sin(\pi x)/\pi x)$
$X \sim \mathcal{CN}(0,1)$	the random variable X is circularly symmetric complex
	Gaussian
	with zero mean and variance $1/2$ in each dimension
W	bandwidth of a signal
C(f;t)	time-varying frequency response of a wireless channel
$c(\tau; t)$	impulse response of a wireless channel
T_m	multipath spread
B_D	Doppler spread
B_C	coherence bandwidth
$(\Delta t)_c$	coherence time (in seconds)
$S(\tau; \lambda)$	scattering function

			٠
Х	х	V	1

Abbreviations

APP	a posteriori probability
AWGN	additive white Gaussian noise
BP	belief propagation
BICM	bit interleaved coded modulation
BLAST	Bell Laboratories layered space-time
BPSK	binary phase shift keying
BSC	binary symmetric channel
c.d.f.	cumulative distribution function
CSI	channel state information
DBLAST	diagonal Bell Laboratories layered space-time
DFE	decision feedback equalization
DFT	discrete Fourier transform
DPSK	differential phase shift keying
DSTC	differential space-time code
EGC	equal gain combining
EM	expectation maximization
FFT	fast Fourier transform
FS	frequency selective
FSK	frequency shift keying
HBLAST	horizontal Bell Laboratories layered space-time
HDD	hard decision decoding
	U
IFFT	inverse fast Fourier transform
IFFT IIR	inverse fast Fourier transform infinite impulse response
IFFT IIR ISI	inverse fast Fourier transform infinite impulse response intersymbol interference
IFFT IIR ISI LAPP	inverse fast Fourier transform infinite impulse response intersymbol interference log a posteriori probability
IFFT IIR ISI LAPP LDPC	inverse fast Fourier transform infinite impulse response intersymbol interference log a posteriori probability low density parity check
IFFT IIR ISI LAPP LDPC LLR	inverse fast Fourier transform infinite impulse response intersymbol interference log a posteriori probability low density parity check log likelihood ratio
IFFT IIR ISI LAPP LDPC LLR LOS	inverse fast Fourier transform infinite impulse response intersymbol interference log a posteriori probability low density parity check log likelihood ratio line of sight
IFFT IIR ISI LAPP LDPC LLR LOS LS	inverse fast Fourier transform infinite impulse response intersymbol interference log a posteriori probability low density parity check log likelihood ratio line of sight least squares
IFFT IIR ISI LAPP LDPC LLR LOS LS LSTC	inverse fast Fourier transform infinite impulse response intersymbol interference log a posteriori probability low density parity check log likelihood ratio line of sight least squares layered space-time code
IFFT IIR ISI LAPP LDPC LLR LOS LS LSTC MAP	inverse fast Fourier transform infinite impulse response intersymbol interference log a posteriori probability low density parity check log likelihood ratio line of sight least squares layered space-time code maximum a posteriori
IFFT IIR ISI LAPP LDPC LLR LOS LS LSTC MAP MAPP	inverse fast Fourier transform infinite impulse response intersymbol interference log a posteriori probability low density parity check log likelihood ratio line of sight least squares layered space-time code maximum a posteriori modified a posteriori probability
IFFT IIR ISI LAPP LDPC LLR LOS LS LSTC MAP MAPP MIMO	inverse fast Fourier transform infinite impulse response intersymbol interference log a posteriori probability low density parity check log likelihood ratio line of sight least squares layered space-time code maximum a posteriori modified a posteriori probability multiple-input multiple-output
IFFT IIR ISI LAPP LDPC LLR LOS LS LSTC MAP MAPP MIMO MISO	inverse fast Fourier transform infinite impulse response intersymbol interference log a posteriori probability low density parity check log likelihood ratio line of sight least squares layered space-time code maximum a posteriori modified a posteriori probability multiple-input multiple-output multiple-output single-input
IFFT IIR ISI LAPP LDPC LLR LOS LS LSTC MAP MAPP MIMO MISO ML	inverse fast Fourier transform infinite impulse response intersymbol interference log a posteriori probability low density parity check log likelihood ratio line of sight least squares layered space-time code maximum a posteriori modified a posteriori probability multiple-input multiple-output multiple-output single-input maximum likelihood

ABBREVIATIONS

xxviii

MLSTC	multilayered space-time code
MMSE	minimum mean-squared error
MMSE-IC	minimum mean-squared error with interference cancellation
M-PSK	<i>M</i> -ary phase shift keying
MRC	maximum ratio combining
MSOVA	modified soft output Viterbi algorithm
OFDM	orthogonal frequency division multiplexing
OFDMA	orthogonal frequency division multiple access
PAM	pulse amplitude modulation
PCCC	parallel concatenated convolutional code
PEP	pairwise error probability
p.d.f.	probability density function
PSK	phase shift keying
QAM	quadrature amplitude modulation
RF	radio frequency
RSC	recursive systematic convolutional
SC	selection combining
SCBLAST	single code Bell Laboratories layered space-time
SCCC	serial concatenated convolutional code
SDD	soft decision decoding
SISO	soft-input soft-output
SOVA	soft-output Viterbi algorithm
SSC	switch and stay combining
STBC	space-time block code
STC	space-time code
STCM	space-time coded modulation
STTC	space-time trellis code
SVD	singular value decomposition
TC-DSTC	turbo coded differential space-time code
TC-USTC	turbo-coded unitary space-time code
TCM	trellis-coded modulation
TDMA	time-division multiple access
TSTC	threaded space-time code
TuCM	turbo-coded modulation
USTC	unitary space-time code
VA	Viterbi algorithm
VBLAST	vertical Bell Laboratories layered space-time
ZF	zero forcing
ZF-IC	zero forcing with interference cancelation