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Preface

Employing multiple transmit and receive antennas, namely using multi-input multi-output
(MIMO) systems, has proven to be a major breakthrough in providing reliable wireless
communication links. Since their invention in the mid-1990s, transmit diversity, achieved
through space-time coding, and spatial multiplexing schemes have been the focus of much
research in the area of wireless communications. Although many significant advancements
have been made recently in MIMO communications, there is still much ongoing research
in this area. Parallel to that, communication companies have already started looking into
integrating MIMO systems in their current and future wireless communication systems. In
fact, several standards for future wireless communication applications have already adopted
MIMO systems as an option.

This book is intended to provide a comprehensive coverage of coding techniques for
MIMO communication systems. The contents of this book have evolved over the past sev-
eral years as a result of our own research in MIMO communications, and the tutorials and
short courses we have given at several conferences (including IEEE International Confer-
ence on Communications (ICC), Global Telecommunications Conference (GLOBECOM),
Vehicular Technology Conference (VTC), and Wireless Communications and Networking
Conference (WCNC)). The feedback we have received motivated us to write this book in
order to address the fundamentals of MIMO communications in an accessible manner.

At this time, several books have been published on MIMO systems. However, there
are a number of factors that differentiate this book from the existing ones. First, we try to
stay away from including very complicated derivations, mathematical expressions, and very
specific systems. Instead, we focus more on the fundamental issues pertaining to MIMO
systems. We use language that is easy to comprehend for a wide audience interested in this
topic, including starting graduate or senior undergraduate students majoring in electrical en-
gineering with some limited training in digital communications and probability theory. For
certain topics, we present more details with some derivations in an effort to accommodate
the needs of a more specific group of researchers or advanced graduate students. However,
the book is organized in such a way that these subjects are easy to spot, and thus, these
should not overwhelm the rest of the audience. Another major factor that differentiates this
book from other books is the breadth of coverage of topics. For instance, in addition to
our coverage of basic MIMO communication algorithms, such as space-time block codes,
space-time trellis codes, unitary and differential signaling and spatial multiplexing schemes,
we include a detailed coverage of turbo codes and iterative decoding for MIMO systems,
antenna selection algorithms, practical issues such as spatial correlation and channel es-
timation, as well as MIMO systems for frequency selective fading channels. Finally, we
provide numerous examples — some elementary, some more advanced — on various topics
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covered, and a large number of references on MIMO communications at the end of each
chapter.

Audience

The primary audience of this book is senior undergraduate students, graduate students,
practitioners and researchers who are interested in learning more about MIMO systems, or
perhaps would like to get into this area of research. For the audience to get the full benefits
of the book, it is recommended that they have some background in digital communications,
linear algebra and probability theory.

Although this book is intended primarily for researchers and practitioners, it can also be
adopted as a textbook for a graduate level, or an advanced undergraduate level, course on
“Wireless MIMO Communications.” The language, organization, and flow of the material
should make this easy. The material could be covered in a one-semester course. In order
to facilitate its use as a textbook, the book is also complemented with a set of problems
at the end of each chapter which serve the purpose of making the main topics covered in
each chapter more clear, and shedding some light on certain aspects that are not provided
in detail in the text.
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