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Abstract

Mathematical representations of infectious diseases include compartment-based SEIR and SEIRS
models. These models are represented using coupled differential equations that capture the flow of
populations from one compartment to another. While these models have been used for several infectious
diseases such as HIV/AIDS, tuberculosis, Dengue fever, and COVID-19, the models do not generally
incorporate compartments for vaccinated populations, asymptomatic infections, and the possibility of
reinfection.

In this paper, we present a modified SEIRS compartment model for infectious diseases. We incorporate
compartments for exposed vaccinated and non-vaccinated populations, and those with symptomatic and
asymptomatic infections. We represent this model with a set of coupled differential equations and derive
the basic reproduction number R0.

We show that this system has, among its fixed points, an endemic equilibrium. This is validated
through attractor plots, which confirm the endemic fixed point, and show that the endemic fixed point
is globally stable.

In future work, we will perform stability analysis on the system using Gersgorin and Lyapunov
theorems.

1 Introduction and System Model

Modeling infectious diseases is a crucial step to control the spread of such infectious diseases.
Mathematical representations such as Susceptible - Infected - Recovered (SIR) and Susceptible - Exposed

- Infected - Recovered (SEIR) [1, 2] have been used to model infectious diseases such as COVID-19 [3], Dengue
fever [4], Tuberculosis [5], and HIV/AIDS [6, 7].

While these models provide a framework for modeling diseases, they are very simple and leave out
significant aspects such as vaccinations, hospitalization, and quarantine. Recent research in this area has
attempted to address this problem in various ways. For example, in [3], the authors include compartments for
diagnosed and non-diagnosed individuals. The hybrid SEIQR model [8] was developed to include quarantine
regulations. While this model was highly customizable, it did not provide the expected results because the
effect of the viral variants and mortality rates were not factored into the model.

Another drawback of several existing models is the lack of possibility of reinfection, not accounting for
vaccinations, and not considering asymptomatic infections. In this paper, we modify the SEIRS model [2]
to include vaccinated and non-vaccinated cases, symptomatic and asymptomatic cases, and the possibility
of reinfection.

In this paper, we present a modified SEIRS model (see Figure 1) that consists of six compartments: (1)
Susceptible, S; (2) Exposed with vaccination, EV ; (3) Exposed with non-vaccination, ENV ; (4) Infected
persons with symptoms, IS ; (5) Asymptomatic infected, IAS ; and (6) Recovered, R.
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Figure 1: Transition diagram of modified six compartmental SEIRS model to predict the infections of disease
spread.

The modified SEIRS model can be represented using a set of coupled differential equations:

dS

dt
= µN + ωR− λS − (V βISS)

N
− ((NV )βISS)

N
, (1)

dEV

dt
=

(V βISS)

N
− (λ+ σSV + σAV )EV , (2)

dENV

dt
=

((NV )βISS)

N
− (λ+ σSNV + σANV )ENV , (3)

dIS
dt

= σSV EV + σSNV ENV − (λ+ αS + γS)IS , (4)

dIAS

dt
= σAV EV + σANV ENV − (λ+ αAS + γAS)IAS , (5)

dR

dt
= γSIS + γASIAS − (λ+ ω)R, (6)

where λ is the natural death rate, µ is the natural birth rate, β is the contact rate, V is the fraction of
the population vaccinated against the infectious disease, NV is the fraction without the vaccine so that V +
NV = 1, αS and αAS are the death rates due to the infectious disease for symptomatic and asymptomatic
infections, respectively, γS and γAS are the recovery rates for the symptomatic and asymptomatic individuals,
respectively, σSV , σSNV , σAV , σANV are the rates of transition from exposed to infected, and ω is the fraction
of recovered persons who lose immunity and become susceptible to infection again.

2 Basic Reproduction Number

The basic reproduction number is a measure of how contagious an infectious disease is. It represents the
average number of secondary infections that result from one infected person in a population of susceptible
individuals. The R0 value refers to how many people, on average, each infected person will transmit the virus
to in a population where no one has immunity to the virus. R0 is determined by considering the dominant
eigenvalue of a next-generation matrix (NGM) [1].

Using the methods described in [1], and from equations (1)-(6), the basic reproduction number, R0, is
calculated to be:

R0 =
[(σSV (V )β)(λ+ σSNV + σANV )] + [(σSNV (NV )β(λ+ σSV + σAV )]

(λ+ σSV + σAV )(λ+ σSNV + σANV )(λ+ αSV + γAV )
. (7)
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The basic reproduction number can be examined to provide one heuristic to determine the stability of
the system [7]:

1. When R0 < 1, disease spread decreases and it leads to disease-free equilibrium (DFE).

2. When R0 > 1, disease spread increases and it leads to endemic equilibrium (EE).

3. When R0 = 1, the system oscillates between the two stable equilibrium points, DFE and EE.

(a) S vs EV (b) S vs ENV

(c) S vs IS (d) S vs IAS

(e) S vs R

Figure 2: Attractor plots: Fig (a) to (e) show the long-term behavior of the model by varying the compart-
ment values of Ev, ENV , IS , IAS and IR as a function of S. The contact rate, β, is fixed at 0.5. All the
curves in the attractor plots, irrespective of initialization, converge at a single point, which is the endemic
equilibrium point, demonstrating that the fixed point derived from the differential equations and the endemic
equilibrium analysis are identical.
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3 Long-term Behavior

Attractor plots are used to understand the evolution of stability of a complex system with a variety of initial
points. They can also show the long-term behavior of the system and the endemic equilibrium point. Results
show that the fixed point from the differential equations [1], the endemic equilibrium obtained [7], and the
point of convergence from simulation results (see Figure 2) are all identical. Because attractor plots of a
six-dimensional model would be hard to visualize, we present five simplified two-dimensional plots as shown
in Figure 2. By fixing the susceptible(S) in the horizontal axis and varying the other five compartments such
as Exposed with vaccinated (EV ), Exposed with non-vaccinated (ENV ), Infected persons with symptomatic,
(IS), Infected persons with Asymptomatic, (IAS) and Recovered(R).

4 Conclusions and Future Work

In this paper, we present a modified SEIRS model for airborne infectious diseases. This compartmental
SEIRS model was developed by incorporating vaccination status, symptomatic, and asymptomatic cases,
and re-infection rates. We derived the equation for the basic reproduction number for our proposed model
and performed a stability analysis. From attractor plots, we were able to show that our theoretical results
and numerical results match and that we obtain a stable fixed point.

In future work, utilizing the Gersgorin and Lyapunov theorems, we will investigate the stability of the
SEIRS model system [9].
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