Neural Networks on Track Gait Analysis for Fatigue Classification

Yumi Lamansky¹, Dhrasti Dalal², Alizée Leleu², Professor Tomas Ward², Dr. Andreas Spanias³, Glen Uehara³

1. SCAI at ASU, 2. SBHSE at ASU, 3. Insight Centre at DCU, 4. School of ECEE at ASU

MOTIVATION

- Since the Covid-19 pandemic, running has increased in popularity
- Musculoskeletal injuries increase in parallel; fatigue primary culprit [1]
- Statistics show injuries are prevalent within novice level runners
- Continuous extraneous activity intensify injuries or can cause permanent damage
- Data is expensive and time-consuming
- Improve machine learning (ML) algorithms

PRELIMINARY RESULTS

- ML & Auto ML for feature selection & feature extraction
- Feature set reduced from ~1500 to 16 for track data
- Simple classical Neural Network (NN)

ONGOING RESEARCH

- Compare time windows vs. stride segmentation of the data
- Examine track data vs. treadmill data
- Improve performance of classical NN

FUTURE RESEARCH – QUANTUM NEURAL NETWORKS

- Quantum computing improves processing power
- Expand NN to hybrid Quantum Neural Network (QNN)

REFERENCES


Fig 8: Quantum computer developed by IBM (photograph by Lars Plougmann via Flickr)