Classical vs Quantum Neural Networks for Fault Detection in Solar Cell Arrays

Emma Skaggs¹, Glen Uehara¹, Andreas Spanias¹, Lenos Hadjidemetriou² [1] SenSIP, School of ECEE at Arizona State University [2] KIOS Center at University of Cyprus

Pyranomete

7 f

emperatur

Objective: Detect and classify faults in large-scale solar systems

- Clean & organize data (outliers, normalization, train/test/validation split) ٠
- Test varying run conditions (activation functions, hidden layers, epochs) ٠
- Create and compare different NN models (F-score, accuracy, confusion matrices) ٠
- Compare classical and quantum results ٠

sensors

PV panel n +

Туре	Qubit	Layers	Neuron vs gates	Epoch	Accuracy
Classical	N/A	3	150	150	~95%
Quantum	2	1	6	30	69.26%
Quantum	4	1	12	30	85.12%
Quantum	2	4	18	30	76.56%
Quantum	4	4	36	30	82.30%

Funded by NSF award 1854273

Learn more at: https://sensip.engineering.asu.edu/nsf-ires-project/