
future work
● account for class imbalances/collect more balanced 

data
● expand cross-training to all models 
● explore more data preprocessing
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I N T R O D U C T I O N 

● Running has increased in popularity resulting in more 
injuries especially amongst amateur runners [1]

● Fatigue - reduction of maximal force/power production 
○ results in biomechanical form changes to 

compensate [2]
○ strain on the tendons, joints, and ligaments of the 

lower body and back
○ detection of fatigue can reduce injuries 

fatigue detection
● velocity, force, and EMG analysis in biomechanics lab - 

expensive and intrusive
○ using IMU is cheaper and can be used in the field

● support vector machines and random forest 
classification typically used [2,3]

O B J E C T I V E S 

feature extraction and selection on treadmill 
data using automatic ML algorithms

1

exploration  of multiple difference machine 
learning models for fatigue classification of 
treadmill data

2

cross-training between treadmill and track 
fatigue classification models

3

F E A T U R E   S E L E C T I O N 

D I S C U S S I O N  &  C O N C L U S I O N 

A C K N O W L E D G E M E N T S, 
R E F E R E N C E S,  &  K E Y
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Fig 1. Selected features outputted by automatic ML python algorithms. H20 infogram 
displays total information (a measure of how much the variable drives the response) 
plotted against net information (a measure of how unique the variable is) for treadmill data

Fig 2. MLJAR supervised output suggests that the CatBoost algorithm will perform 
best for fatigue classification and neural networks will perform significantly worse

R A N D O M   F O R E S T 

● H20 and autoML allow for optimized feature reduction 
for track and treadmill data independently

○ for treadmill data - length, gyro_y_dwc_m, and 
acc_wr_x_dwc_m are the only admissible 
features for classification

● Random forest model predicts fatigue most accurately 
● cross-training improves results

Algorithm Neural 
Network

Random 
Forest

Xgboost Catboost

f1 score 0.3852 0.606604 0.581303 0.612859

track data [4] treadmill data
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