# Classification of Treadmill Running Fatigue With Machine Learning

Dhrasti Dalal<sup>1</sup>, Alizee Leleu<sup>3</sup>, Yumi Lamansky<sup>4</sup>,Mohit Malu<sup>2</sup>, Tomas Ward<sup>3</sup>, Andreas Spanias<sup>2</sup>

<sup>1</sup>ASU School of Biological and Health Systems Engineering, <sup>2</sup>ASU School of Electrical, Computer and Energy Engineering, <sup>3</sup>Dublin City University, <sup>4</sup>ASU School of Computing and Augmented Intelligence

# Insight

SFI RESEARCH CENTRE FOR DATA ANALYTICS



#### INTRODUCTION

- Running has increased in popularity resulting in more injuries especially amongst amateur runners [1]
- Fatigue reduction of maximal force/power production
  - results in biomechanical form changes to compensate [2]
  - strain on the tendons, joints, and ligaments of the lower body and back
  - detection of fatigue can reduce injuries

#### fatigue detection

- velocity, force, and EMG analysis in biomechanics lab expensive and intrusive
  - using IMU is cheaper and can be used in the field
- **support vector machines** and **random forest** classification typically used [2,3]

#### OBJECTIVES

- 1 feature extraction and selection on treadmill data using automatic ML algorithms
- 2 exploration of multiple difference machine learning models for fatigue classification of treadmill data

3 cross-training between treadmill and track fatigue classification models

## FEATURE SELECTION

H20 selected features

MLJAR selected features

Acc\_WR\_Z\_mean Acc\_WR\_Y\_mode Acc\_WR\_Y\_max

| Algorithm | Neural<br>Network | Random<br>Forest | Xgboost  | Catboost |
|-----------|-------------------|------------------|----------|----------|
| f1 score  | 0.3852            | 0.606604         | 0.581303 | 0.612859 |

Fig 2. MLJAR supervised output suggests that the CatBoost algorithm will perform best for fatigue classification and neural networks will perform significantly worse

#### ALGORITHM EXPLORATION







#### DISCUSSION & CONCLUSION

- H20 and autoML allow for optimized feature reduction for track and treadmill data independently
  - for treadmill data length, gyro\_y\_dwc\_m, and acc\_wr\_x\_dwc\_m are the only admissible features for classification
- Random forest model predicts fatigue most accurately
- cross-training improves results



Acc\_WR\_Z\_range Acc\_WR\_X\_energy Gyro\_X\_25% Acc\_WR\_X\_dwc\_m Acc\_WR\_Z\_dwc\_m Gyro\_X\_dwc\_m Gyro\_Y\_dwc\_m Mag\_Y\_dwc\_v

Fig 1. Selected features outputted by automatic ML python algorithms. H20 infogram displays total information (a measure of how much the variable drives the response) plotted against net information (a measure of how unique the variable is) for treadmill data

#### future work

- account for class imbalances/collect more balanced data
- expand cross-training to all models
- explore more data preprocessing

### ACKNOWLEDGEMENTS, REFERENCES, & KEY



