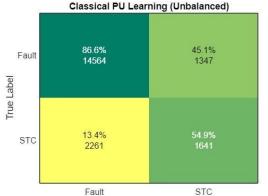
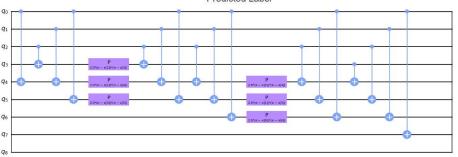


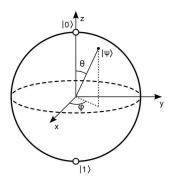
Quantum Positive Unlabeled Learning for PV Fault Detection

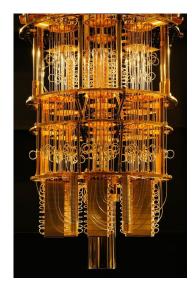
Brent Brightwell¹, Andreas Spanias¹, Glen Uehara¹, Lenos Hadjidemetriou², Christos Laoudias² [1] School of ECEE at Arizona State University [2] KIOS Research and Innovation Centre of Excellence at University of Cyprus

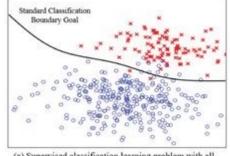

Objective: Investigate positive unlabeled learning in a quantum environment and determine its usefulness in classifying solar fault detection

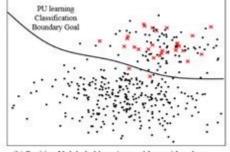
Process:


- Obtain partially unlabeled solar datasets from ASU solar research facility
- Preprocess data (standardization, one-hot encoding, train-test split)
- Develop optimal ML algorithm (Bagging, SVM, Deep Neural Binary Classifier)
- Process random selections of labeled and unlabeled data to get p-score
- Using p-scores, determine appropriate labels for unlabeled data
- Evaluate accuracy with known labeled datasets


Next Steps:


- Investigate PU Learning using SVM's
- Integrate a quantum algorithm into current PU Learning code
- Experiment with Asymmetric Loss Function for PUL





(a) Supervised classification learning problem with all labels known.

percentage of known positive labels

