EEG Artifact Removal in a Passive P300-Based BCI with Deep Learning

Anvitha Doddipalli¹, Ahsan Awais², Tomas Ward², Marco Santello¹, Jitendran Muthuswamy¹

[1] Arizona State University School of Biological and Health Systems Engineering [2] Dublin City University SFI Insight Centre for Data Analytics

INTRODUCTION

- Brain Computer Interfaces (BCIs) have wide range of applications – treatment/rehabilitation of sensorimotor and cognitive disorders, neuromarketing and advertising, to even gaming and entertainment
- Currently used/tested in a controlled, experimental settings
- Day to day passive use – environmental noise, talking, eye, jaw, and body movements generate artifacts in EEG signal
- To implement BCI systems in real world scenarios - need to filter out artifacts
- P300 - one of the most commonly used event-related potentials (ERP) for BCIs, easy to learn & identify but low SNR & high variance

OBJECTIVE

- Improve P300 signal classification in the presence of muscular artifacts
- Compare classical signal processing techniques with deep learning methods

DATA COLLECTION - P300 RSVP TASK

5 subjects, 4 sessions
4 trial conditions per session
- clean RSVP task
- RSVP + body movement
- RSVP + talking
- RSVP + head movement
90s, 360 images at 4Hz, 10% target

ERP EXTRACTION & VISUALIZATION

PRELIMINARY RESULTS

Pre-processing: Re-referencing w/ CPz channel, Resampling 1000Hz → 100Hz, Butterworth Bandpass Filter 0.3-30Hz

Dimensionality Reduction: 6 channels (Fz, Cz, P3, Pz, P4, Oz), reduced epoch window from 250-650 ms post-stimulus

Class Imbalance: tested oversampling target vs undersampling standard data

Classification: using reduced time series data & SVM, single - split validation

AUROC scores:
- clean data - 0.93
- body movement - 0.91
- talking - 0.89
- head movement - 0.53

DISCUSSION

- Oversampling target data to balance classes gave better results than undersampling standard data
- Single split classification not valid → need to cross-train & validate
- Artifacts lower the classification accuracy
- Head movement disrupts data the most
- Need further processing / extract different features to filter out artifacts

ONGOING WORK

- Testing different types of Feature Extraction: AOC, Max Amplitude, PSD, CSP, BSS w/ ICA
- Testing different classifiers: SVM, LDA, Bayesian Ridge, Neural Net
- Testing data w/ existing CNN and LSTM models in literature

REFERENCES