
978-1-6654-0032-9/21/$31.00 ©2021 IEEE

Abstract— In this paper, we describe solar array monitoring

using various machine learning methods including neural

networks. We study fault detection using a quantum computer

system and compare against results with a classical computer.

We specifically propose a quantum circuit for a neural network

implementation for Photovoltaic (PV) fault detection. The

quantum circuit is designed for two qubits. Results and

comparisons are presented for PV fault detection using a classical

and quantum implementation of neural networks. In addition,

simulations of a Quantum Neural Network are carried for a

different number of qubits and results are presented for PV fault

detection.

I. INTRODUCTION

Wireless sensor networks and signal processing algorithms

have been used for monitoring the voltage (V), current (I),

irradiance and temperature of utility scale Photovoltaic (PV)

arrays [1]. Originally, these studies explored the utility of

standard statistical methods such as the Mahalanobis criterion

[1] and later begun exploring the use of machine learning

(ML) methods for PV fault detection. Fault detection using

standard K-means methods has been reported in [2], [3],

neural network methods (NN) in [4], [5], and positive

unlabeled (PU) learning in [6]. Real-time study of faults on the

DC side is enabled by wireless sensors and actuators. In

particular, a smart monitoring device (SMD) has been

developed in [7] and is shown in Figure 1. The SMD has

sensors and actuators (relays) along with a microcontroller and

an RF unit. It provides V-I, temperature, and irradiance data

which can be shared on the Internet for analytics and control.

It was shown that a solar array fitted with web-connected

SMDs [3] forms an Internet of Things (IoT) network [8]

where every solar panel can be accessed and provide data

from remote locations. The SMD enables fault detection [9]

and topology optimization [10]. With the use of measurements

and relays, mal-functioning panels can be bypassed, and

shaded panels can be reconnected from series to parallel to

equalize radiance.

Topology reconfiguration

using SMDs and machine

learning has also been studied

and results have been

presented in [11]–[13].

Figure 1 The smart monitoring device

(SMD) for solar panel monitoring and
control.

In this paper, we explore machine learning algorithms for

solar array monitoring and control. We study specifically

neural network solutions for fault detection. We then

implement a quantum computing [14] based neural network

system. We present two implementations based on a design of

a quantum circuit. The first hybrid quantum neural network

(hybrid QNN1) is run with two qubit and four-qubit

resolution. The second is an improved quantum circuit (hybrid

QNN2) running with two-qubits. In our study , we show the

accuracy, CPU run time, and the number of epochs used for

QNN training.

The overall system used for solar array analytics, fault

detection, and topology reconfiguration is shown in Figure 2.

SMDs are installed one on each solar panel and provide data

and the overall status on the PV array. The SMDs provide data

via wireless connection and every panel has a MAC address

and can be accessed after user authentication. These devices

have relays and can form a switching matrix that can be used

to form different panel connections.

Figure 2 Smart solar array monitoring system integrated with quantum and

classical machine learning fault diagnosis algorithms.

Fault Detection and Classification

The reliability of PV systems is essential in terms of

maintaining the supply of power to the grid. Typically, solar

panels are connected in series to form strings and then strings

are connected in parallel. For example, in our solar array

testbed facility at the ASU research park [3], we have 13

panels connected in series to form a string and then 8 such

strings connected in parallel. PV faults studied include ground

faults, series and parallel arc faults, soiling, and shading. Each

of these faults has its own characteristics. Results and

comparisons are presented for NN-based detection. The study

on pruned NN is based Lottery Ticket Hypothesis

optimization method [15].

The rest of the paper is organized as follows. Section II

describes ML methods for fault detection. Section III presents

work on the implementation of NN using quantum computing.

Finally, section IV presents concluding remarks.

Quantum Neural Network Parameter Estimation

for Photovoltaic Fault Detection
Glen Uehara, Sunil Rao, Mathew Dobson, Cihan Tepedelenlioglu and Andreas Spanias

SenSIP Center, School of ECEE, Arizona State University

20
21

 1
2t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 In
fo

rm
at

io
n,

 In
te

lli
ge

nc
e,

 S
ys

te
m

s &
 A

pp
lic

at
io

ns
 (I

IS
A

) |
 9

78
-1

-6
65

4-
00

32
-9

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
D

O
I:

10
.1

10
9/

II
SA

52
42

4.
20

21
.9

55
55

58

Authorized licensed use limited to: ASU Library. Downloaded on May 12,2023 at 00:37:33 UTC from IEEE Xplore. Restrictions apply.

II. MACHINE LEARNING FOR PV FAULTS

Clustering PV faults using ML is useful for detecting and

identifying the type of fault [16]. The problem has been

handled before using statistical outlier detection techniques

[2]. ML training requires sizeable data sets that cover array

behavior for each fault condition. A comprehensive PV fault

dataset does not currently exist and gathering real-time data

for different fault conditions is difficult. For this reason, we

used two data sets, namely the NREL data [17] and a synthetic

dataset generated using the Sandia PV model [18]. The NREL

PVWatts [18] includes data on 4 commonly occurring faults,

as well as the standard test conditions of PV arrays. It covers

the following categories: shaded, soiled, short-circuit, and

degraded modules. The data was obtained for a period of one

year and included irradiance, temperature, and maximum

power measurements. In our classical computing fault

detection simulations, we first examine neural networks and

compare them against three supervised ML algorithms,

namely, the Random Forest Classifier (RFC), the k-Nearest

Neighbor (kNN), and the Support Vector Machine (SVM). We

studied a set of 9-dimensional custom input features. The

dataset contains a total of 22000 samples. We used a 22000 x

9 feature matrix to profile and compare the ML algorithms.

A. Neural Network Classifier for Fault detection

The NN architecture in Figure 3 uses the feature matrix as the

input layer. It has five hidden layers consisting of six neurons

each. Training is performed using standard backpropagation.

The activation function in each neuron is a hyperbolic tangent,

with a final SoftMax output activation function to estimate the

fault type. Our simulations presented in the results section use

70% of the labeled data for training and the rest split evenly

for validation and testing. Classification results on fault

detection with comparisons to standard ML algorithms are

presented in this section. Neural network simulations with

quantum computing architectures are described in Section III.

Figure 3 Neural Network for PV fault classification.

B. Random Forest Classifier

The Random Forest Classifier (RFC) is a classification

algorithm based on an ensemble of decision trees. A decision

tree is constructed by a set of input features from a randomly

sampled batch of the dataset. RFC involves two hyper-

parameters: the number of decision trees and the depth of the

decision tree. RFCs are capable of modeling complex data sets

and are robust to outliers [19].

B. The k-Nearest Neighbors

The k-nearest neighbor algorithm (kNN) [20] is a simple non-

parametric classifier, where classification is based on local

membership scores. In the training phase, a similarity measure

for each data point with its closest k neighboring data points is

stored. To classify a test sample, similarity scores between the

test sample and all other data points are calculated, and the

class label assigned is the label corresponding to the majority

of k closest samples based on the similarity score.

C. The Kernel SVM

Kernel SVM is a soft margin classifier robust to outliers.

Computing the soft margin classifier is equivalent to

minimizing the loss function,

 (1)

where, is a hyper-parameter which regularizes the weights

and is the kernel function. The loss function in equation 1

can be reduced to a quadratic programming problem and

solved by a convex solver. Common choices of kernel

functions are polynomial kernels, Gaussian radial basis

kernels, and hyperbolic tangent kernels. The success of SVM

depends on the appropriate choice of kernel.

D. Fault Detection Results and Comparisons

We compare the performance of the neural network fault

detection against standard machine learning algorithms such

as the RFC, SVM, and kNNs. These comparisons are

developed on a classical computer. The RFC classifier was

trained with 300 estimators with a depth of 50, the SVM was

trained with radial basis kernel, and kNN with 30 nearest

neighbors. We observe that techniques such as the RFC overfit

the training data with a near-perfect training accuracy while

the test accuracy is 86.32%. The SVM has a lower accuracy of

85.31% and a test accuracy of 83.29%. We also observe that

the kNN gives a training accuracy of 87.15% and a test

accuracy of 85.76%. Compared to these methods, the feed-

forward NN provides the best results. In our studies, we

obtained a training accuracy of 91.62% and a test accuracy of

89.34% using a feed-forward three-layer neural network.

Furthermore fault detection research based on pruned and

dropout neural networks [38] has also provided encouraging

results. In addition to using classical computing methods for

fault detection, Quantum computing (QC) implementations are

also considered in this paper. Motivated by the promise of

Quantum speeds, we attempted to design a quantum circuit for

fault detection. The QC simulations are based on a two-qubit

system and are described in the next section. Additional

simulations with different numbers of qubits are also

presented.

III. PV FAULT DETECTION USING A QUANTUM NN

In this section, we present preliminary work on Quantum NN

(QNN) [21] parameter estimation that is based on state vector

networks [22]. This system introduces a variational ansatz that

can be used to represent the quantum ground states [23]. The

implementation of a QNN system is currently constrained

because of the limited availability and cost of a quantum

computing system. A hybrid quantum-classical NN [24], [25]

is proposed and evaluated for PV fault detection. The

architecture for the hybrid quantum-classical NN is shown in

Figure 4. This system uses the quantum circuit for the hidden

layer of the neural network. For the PV Fault Detection, we

Authorized licensed use limited to: ASU Library. Downloaded on May 12,2023 at 00:37:33 UTC from IEEE Xplore. Restrictions apply.

run experiments only for fault/no-fault detection. This is

because of constraints to work with manageable low-precision

quantum circuit designs that have a limited number of qubits.

The hybrid QNN Design

The first step in building the hybrid QNN is to understand

the detection problem. Quantum algorithms take advantage of

the feature space by using the large dimensionality of quantum

Hilbert space [26]. For this problem, we will operate the

hybrid QNN by taking a quantum circuit with a feature map

that would be analogous to the conventional SVMs.

The ML package is in the Qiskit SDK [27] and is called Qiskit

Machine Learning [28]. Qiskit introduces a two-layer QNN

that takes the parameterized operator to leverage a gradient

framework to provide the backward pass. This two-layer

hybrid QNN is designed and evaluated for PV fault/no-fault

detection.

ClassicalQuantumClassical

…
..

Q
u

a
n

tu
m

 C
ir

c
u

it

Figure 4 Hybrid quantum-classical System for QNN simulations.

The quantum expression of this quantum circuit is in the

hidden layer. The circuit represents neurons that exploit

quantum computing and encompass a nonlinear mapping

capability. We developed preliminary hybrid QNN training

simulation results, which we will validate later on an actual

quantum computer with PV fault data.

The hybrid quantum-classical approach also allows for

interfaces to existing ML toolkits. Included are a PyTorch [29]

connection, a NN regressor, and a NN classifier. This

quantum-enhanced design takes the current classical

implementation and transforms different parts of the algorithm

into the quantum platform.

A. The hybrid QNN for Fault Detection

In this paper, we present two hybrid QNN models for fault

detection. The first, hybrid QNN1 is based on the combined

circuits presented in Figure 7 and Figure 5. The second hybrid

QNN2 is based on combined circuits in Figure 12 and Figure

13. The two hybrid QNN models are compared against the

classical NN. The classical NN and hybrid QNN use the same

Adam optimization [30] algorithm. However, the loss

function differs between the two systems. The hybrid QNN

uses the binary cross-entropy function [31], while the classical

NN used a categorical cross-entropy function [32], [33]. To

evaluate these systems we use the NREL dataset [17]. was

chosen for both the classical NN described in Section II In our

study, we used 80% and 20% of the data for training and

testing, respectively.

We present results in terms of accuracy, CPU run time,

training epoch count, and the number of qubits used.

B. The hybrid QNN1

The hybrid QNN1 for PV fault detection will use the two-

layer QNN. To build this two-layer QNN, the feature map and

ansatz quantum circuits are used. The quantum gates in the

circuits will be used as the NN parameters [21].

We design the QNN using the ZZFeaturemap provided by the

Qiskit Aqua [34] and the algorithms package in the Qiskit

SDK. The feature map is used to select the number of qubits

based on the input dimension of the data and its repetitions or

the circuit depth. The initial design is based on a 2-qubit

architecture in order to manage the computational complexity

and time of the quantum simulations (Figure 7).

For the ansatz [35], [36], we choose the variational form as

RealAmplitudes, from the Qiskit. An ansatz is the sequence of

gates applied to specific wires of the system. For the hybrid

QNN, we use these types of gates and the associated

parameters for optimization and determination of the QNN

weights. Figure 5 shows the quantum circuit for the two-qubit

system. To complete the two-layer QNN, these two circuits

are combined. As a note, to connect these two circuits, the

same number of qubits between the feature map and ansatz

circuit is needed.

Figure 5 Quantum circuit of the hybrid QNN1 - RealAmplitudes [37].

To compare the hybrid QNN and the classical NN, we use the

confusion matrix. The classical NN is evaluated as shown in

Figure 6 and is found to have an accuracy of 95.29%.

Figure 6 Confusion matrix of the classical NN.

Authorized licensed use limited to: ASU Library. Downloaded on May 12,2023 at 00:37:33 UTC from IEEE Xplore. Restrictions apply.

Figure 7 Quantum circuit of the feature map [34] used for the hybrid QNN1.

.

Our evaluation of the hybrid QNN1, starts by presenting one

sample convergence curve with twenty-five epoch training as

shown in Figure 8. The figure shows the binary cross-entropy

learning curve for the model. As it is seen the algorithm

converges.

Figure 8 Binary Cross Entropy Learning Curve for 25 Epochs.

We present a similar confusion matrix for the fault detection

on hybrid QNN1. This model has an accuracy of 87.8%, as

seen in Figure 9.

Figure 9 Confusion matrix of the hybrid QNN1 with 25 epoch training with

87.8% accuracy.

To explore further the quantum ML models, we attempt to

improve the system by updating the quantum circuits as shown

in the next subsection.

C. Varying parameters in hybrid QNN1

To determine if we can increase the accuracy, we began our

experimentation with hybrid QNN1. For this, we explored

changing the number of epochs (5, 10, 18, 25, 100) and

varying the number of qubits (i.e., 2, 3, 4)

We experimented with different epoch counts. We present one

of our findings where we increased our count to a hundred.

We observe that the accuracy increases to 93.80%, as shown

in Figure 10.

Figure 10 Confusion matrix of the hybrid QNN1 with 100 epoch training with

93.89 % accuracy.

Using the same feature map and ansatz, we updated the circuit

to support additional qubits. Here, we note a smaller increase

in accuracy as we increase the number of qubits. For example,

for four qubits, our experiment resulted in an accuracy of

90.2%, as seen in Figure 11.

Figure 11 Confusion matrix of the hybrid QNN1 with 4 qubits with an

accuracy of 90.2%

D. The hybrid QNN2

For hybrid QNN2, we examined ways to modify the feature

map and ansatz’s depth (or repetition) for this quantum circuit.

Qiskit allows for both circuits to repeat. By repeating,

additional gates are added, thereby increasing the depth of the

circuit. These new quantum gates can be used for

implementing NN parameters that are updated during the

learning process. For example, in Figure 12, the P, Ry, and Rz

gates represent the parameters that may be updated during the

learning process.

Authorized licensed use limited to: ASU Library. Downloaded on May 12,2023 at 00:37:33 UTC from IEEE Xplore. Restrictions apply.

978-1-6654-0032-9/21/$31.00 ©2021 IEEE

Figure 12 Updated feature map [34] (‘Z’, ‘X’, ‘ZY’) used hybrid QNN2.

We attempt to determine whether these additional parameters

in the circuit have any impact on the learning process. We

modified the feature map and the ansatz that was previously

used for our hybrid QNN. For the feature map, a

PauliFeatureMap was used (Figure 12). In this circuit, we

created a gate combination of ‘Z’, ‘X’, and ‘ZY’. For the

ansatz of the circuit in Figure 13, we updated it to use the

built-in EfficientSU2 as our function. As seen in Figure 13, we

also repeated the base circuit to increase the number of

parameters. This test is to determine whether these additional

gates improve the learning rate. The goal was to increase the

accuracy with fewer epochs. For this model validation, the

epoch size was set to eighteen.

Figure 13 Updated anastaz used hybrid QNN2.

Running hybrid QNN2, we see in Figure 14 that our accuracy

is now 90.5%.

Figure 14 Confusion matrix of the hybrid QNN over 18 epochs.

E. The State Vector validation of hybrid QNN

As the last step in validating the hybrid QNN algorithm, we

used state vector validation. This is a method to validate the

algorithm without using a quantum simulator. In this

simulation, we obtain a result of 93.8% accuracy.

Figure 15 Confusion matrix of a hybrid QNN2 over 18 epochs.

F. Discussion of hybrid QNN

In our study, we are attempting to develop the best possible

quantum model for fault detection given restrictions in the

simulation execution and logistics. We examined the epoch

length, increasing the number of quantum gates that can be

used for representing parameters in a NN and the number of

qubits. In our base circuit, we found that increase in epoch

count helps improve accuracy. We also found that the increase

in quantum gates helped reduce the epoch count. As we can

see, epoch count is the major area to investigate given the

difficult constraints of quantum circuit design and simulations.

As we run with quantum simulators, the time for each epoch is

an important factor in developing a circuit. The next step in

our research are: a) investigate different QNN models to find

an efficient balance of gates to be used as parameters for NN,

b) adding GPU acceleration to the classical set, and c) possibly

expand to add the complete fault classification tasks for the

NREL dataset [17].

G. Fault Detection Results and Comparisons

The hybrid QNN models show similar detection test accuracy

as the classical NN fault detection discussed in this research.

The hybrid QNN designs presented in this paper are still not as

computationally efficient as the classical NN in time or

accuracy but show some promise. The following table presents

initial results from our preliminary fault detection testing. As

it can be seen, the accuracy of detection with the QNN is close

to the classical NN detection presented in Section II.

In TABLE I. , we observe that increasing epochs has an

impact on accuracy. However, the time to run this simulation

is an important factor in building circuits to run on a quantum

simulator. We next compare the increase in quantum gates

versus the increase in qubits. Here, we find that the increase in

quantum gates has a similar performance increase as adding

Authorized licensed use limited to: ASU Library. Downloaded on May 12,2023 at 00:37:33 UTC from IEEE Xplore. Restrictions apply.

additional qubits. Furthermore, in some cases we observed

similar accuracy with fewer epochs.

TABLE I. FAULT DETECTION RESULTS AND COMPARISONS

Fault Detection

Algorithm

Training

Epoch

CPU

Time

Detection

Accuracy

Classical NN 300 20 sec 95.39%

Hybrid QNN1 (2 qubits) 25 10 hours 87.8%

Hybrid QNN1 (2 qubits), 100 ~4 days 93.89%

Hybrid QNN1 (4 qubits), 25 ~2 days 90.2%

Hybrid QNN2 (2 qubits) 18 8 hours 90.5%

These initial findings are important in determining the next

steps in our research. The goal for fault detection is to build a

quantum circuit with the appropriate number of quantum gates

to increase accuracy yet keep the needed epoch count

reasonable to run the quantum simulator.

IV. CONCLUSION

In this paper, we explored the use of NN for fault detection in

an effort to improve performance and robustness in utility

scale PV arrays. The methods presented are enabled by smart

monitoring devices and neural networks that are applied for

fault detection. The application of NN to fault detection

provided higher accuracy in detecting and classifying faults

relative to standard ML methods. In addition to fault detection

using classical NN, we also presented the implementation of

fault detection on a quantum system. Preliminary results with

a two-qubit implementation provide modest fault detection

relative to full precision classical computation. However,

when qubits were added, we did not observe significant

improvements in accuracy. We believe this is due to the

quantum-related noise added when more qubits are used in the

simulation. Furthermore, the QNN simulations required long

computational times that prevented long training periods.

Therefore, faster computing is needed in order to enable

additional iterations (epochs) with the neural network. The

intensive computing time required with the quantum simulator

was in excess of four hours on an ordinary computer.

Nevertheless, we anticipate elevating the accuracy

significantly by gaining additional access to quantum

simulators and designing higher resolution quantum circuits.

To further improve accuracy and high qubit simulations of

QNN, methods to reduce quantum measurement error have to

be integrated.

ACKNOWLEDGEMENT

This research is supported in part by the NSF CPS Award

number 1646542, the Quantum Computing NCSS SenSIP

I/UCRC project, and the ASU SenSIP center.

REFERENCES

[1] H. Braun, S. T. Buddha, V. Krishnan, C. Tepedelenlioglu, A.

Spanias, T. Takehara, T. Yeider, M. Banavar, and S. Takada,

“Signal processing for solar array monitoring, fault detection, and
optimization,” Synth. Lect. Power Electron.,Morgan and Claypool

Publishers, vol. 4, pp. 1–95, 2012.

[2] R. Fazai, K. Abodayeh, M. Mansouri, M. Trabelsi, H. Nounou, M.

Nounou, and G. E. Georghiou, “Machine learning-based statistical

testing hypothesis for fault detection in photovoltaic systems,” Sol.

Energy, vol. 190, pp. 405–413, 2019.
[3] S. Rao, D. Ramirez, H. Braun, J. Lee, C. Tepedelenlioglu, E.

Kyriakides, D. Srinivasan, J. Frye, S. Koizumi, Y. Morimoto, and

A. Spanias, “An 18 kW solar array research facility for fault
detection experiments,” in Proceedings of the 18th, MELECON

2016 IEEE, Limassol 2016.

[4] S. Rao, A. Spanias, and C. Tepedelenlioglu, “Solar array fault
detection using neural networks,” in Proceedings - 2019 IEEE

International Conference on Industrial Cyber Physical Systems,
ICPS 2019, 2019, pp. 196–200.

[5] E. Garoudja, A. Chouder, K. Kara, and S. Silvestre, “An enhanced

machine learning based approach for failures detection and
diagnosis of PV systems,” Energy Convers. Manag., vol. 151, pp.

496–513, 2017.

[6] K. Jaskie, J. Martin, and A. Spanias, “Photovoltaic Fault Detection
using Positive Unlabeled Learning,” Appl. Sci., no. Intelligent Fault

Diagnosis of Power Systems, 2021.

[7] T. Takehara and S. Takada, “Photovoltaic panel monitoring
apparatus.” U.S. Patent No. 8,410,950., issued April 2, 2013.

[8] A. S. Spanias, “Solar energy management as an Internet of Things

(IoT) application,” in 2017 8th International Conference on
Information, Intelligence, Systems and Applications, IEEE IISA,

Larnaca, August, 2017.

[9] H. Braun, S. T. Buddha, V. Krishnan, A. Spanias, C.
Tepedelenlioglu, T. Yeider, and T. Takehara, “Signal processing for

fault detection in photovoltaic arrays,” in ICASSP, IEEE

International Conference on Acoustics, Speech and Signal
Processing - Proceedings, 2012, pp. 1681–1684.

[10] H. Braun, S. T. Buddha, V. Krishnan, C. Tepedelenlioglu, A.

Spanias, M. Banavar, and D. Srinivasan, “Topology reconfiguration
for optimization of photovoltaic array output,” Sustainable Energy,

Grids Networks (SEGAN), vol. 6, pp. 58–69, 2016.

[11] V. S. Narayanaswamy, R. Ayyanar, A. Spanias, C. Tepedelenlioglu,
and D. Srinivasan, “Connection topology optimization in

photovoltaic arrays using neural networks,” in Proceedings - 2019

IEEE International Conference on Industrial Cyber Physical
Systems, ICPS 2019, May 2019, pp. 167–172.

[12] J. P. Storey, P. R. Wilson, and D. Bagnall, “Improved optimization

strategy for irradiance equalization in dynamic photovoltaic arrays,”
IEEE Trans. Power Electron., vol. 28, no. 6, pp. 2946–2956, 2013.

[13] M. Jazayeri, K. Jazayeri, and S. Uysal, “Adaptive photovoltaic array

reconfiguration based on real cloud patterns to mitigate effects of
non-uniform spatial irradiance profiles,” Sol. Energy, vol. 155, pp.

506–516, 2017.

[14] G. Uehara, A. Spanias, and W. Clark, “Quantum Computing
Algorithms for Machine Learning and Signal Processing.” IEEE

IISA 2021, Crete, July 2021.

[15] J. Frankle and M. Carbin, “The lottery ticket hypothesis: Finding
sparse, trainable neural networks,” 7th Int. Conf. Learn. Represent.

ICLR 2019, 2019.

[16] S. Rao, S. Katoch, V. Narayanaswamy, G. Muniraju, C.
Tepedelenlioglu, A. Spanias, P. Turaga, R. Ayyanar, and D.

Srinivasan, “Machine Learning for Solar Array Monitoring,

Optimization, and Control,” Synth. Lect. Power Electron., Morgan
and Claypool Publishers, vol. 7, no. 1, pp. 1–91, 2020.

[17] A. Dobos, “PVWatts version 1 technical reference,” Nrel/Tp, no.

October, p. 1 online resource (8 pages), 2013, [Online]. Available:
http://purl.fdlp.gov/GPO/gpo51913.

[18] J. Peng, L. Lu, H. Yang, and T. Ma, “Validation of the Sandia
model with indoor and outdoor measurements for semi-transparent

amorphous silicon PV modules,” Renew. Energy, vol. 80, pp. 316–

323, 2015.
[19] T. K. Ho, “Random decision forests,” in Proceedings of the

International Conference on Document Analysis and Recognition,

ICDAR, 1995, vol. 1, pp. 278–282.
[20] N. S. Altman, “An introduction to kernel and nearest-neighbor

nonparametric regression,” Am. Stat., vol. 46, no. 3, pp. 175–185,

1992.
[21] Z. Jia, B. Yi, R. Zhai, Y. Wu, G. Guo, and G. Guo, “Quantum

Neural Network States: A Brief Review of Methods and

Applications,” Adv. Quantum Technol., vol. 2, no. 7–8, p. 1800077,
2019.

Authorized licensed use limited to: ASU Library. Downloaded on May 12,2023 at 00:37:33 UTC from IEEE Xplore. Restrictions apply.

[22] C. Cortes and V. Vapnik, “Support-vector networks,” in Machine

learning, vol. 20, no. 3, pp. 273–297, Sep. 1995.

[23] G. Aleksandrowicz, T. Alexander, P. Barkoutsos, L. Bello, Y. Ben-
Haim, D. Bucher, F. J. Cabrera-Hernández, J. Carballo-Franquis, A.

Chen, C.-F. Chen, and others, “Qiskit: An open-source framework

for quantum computing,” Accessed on: Mar, vol. 16. 2019.
[Online].

[24] X. Hong and C. Maojun, “Hybrid quantum neural networks model

algorithm and simulation,” in 5th International Conference on
Natural Computation, ICNC 2009, 2009, vol. 1, no. 1, pp. 164–168.

[25] M. A. Metawei, H. Said, M. Taher, H. Eldeib, and S. M. Nassar,
“Survey on Hybrid Classical-Quantum Machine Learning Models,”

in Proceedings of the 2020 IEEE International Conference on

Communications, Computing, Cybersecurity, and Informatics,
CCCI 2020, 2020, pp. 1–6.

[26] V. Havlíček, A. D. Córcoles, K. Temme, A. W. Harrow, A.

Kandala, J. M. Chow, and J. M. Gambetta, “Supervised learning
with quantum-enhanced feature spaces,” Nature, vol. 567, no. 7747,

pp. 209–212, Mar. 2019.

[27] Open-source quantum development. Qiskit. (n.d.). https://qiskit.org/.
[28] Qiskit, “Introducing Qiskit Machine Learning,” Medium, 2021.

https://medium.com/qiskit/introducing-qiskit-machine-learning-

5f06b6597526.
[29] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T.

Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Köpf,

E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B.
Steiner, L. Fang, et al., “PyTorch: An imperative style, high-

performance deep learning library,” Advances in Neural Information

Processing Systems, vol. 32. 2019.
[30] D. P. Kingma and J. L. Ba, “Adam: A method for stochastic

optimization,” Dec. 2015. Accessed: Jun. 19, 2021. [Online].

Available: https://arxiv.org/abs/1412.6980v9.
[31] A. Creswell, K. Arulkumaran, and A. A. Bharath, “On denoising

autoencoders trained to minimise binary cross-entropy,” Aug. 2017,

Accessed: Jun. 07, 2021. [Online]. Available:
http://arxiv.org/abs/1708.08487

[32] R. Atienza, Advanced Deep Learning with Keras. 2018. Accessed:

Jun. 21, 2021. [Online]. Available: https://www.packtpub.com/big-
data-and-business-intelligence/deep-learning-keras.

[33] A. Kumar, “Keras - Categorical Cross Entropy Loss Function - Data

Analytics,” Data Analytics, 2020. https://vitalflux.com/keras-
categorical-cross-entropy-loss-function/ (accessed Jun. 21, 2021).

[34] “Feature Maps (qiskit.aqua.components.feature_maps) - Qiskit

0.26.2 documentation.”
https://qiskit.org/documentation/apidoc/qiskit.aqua.components.feat

ure_maps.html.

[35] J. Hermann, Z. Schätzle, and F. Noé, “Deep-neural-network solution
of the electronic Schrödinger equation,” Nat. Chem., vol. 12, no. 10,

pp. 891–897, 2020.

[36] J. Bausch and F. Leditzky, “Quantum codes from neural networks,”
New J. Phys., vol. 22, no. 2, p. 23005, 2020d.

[37] Qiskit, “Basic Qiskit Syntax.” https://qiskit.org/textbook/ch-

appendix/qiskit.html.
[38] S. Rao, G. Muniraju, C. Tepedelenlioglu, D. Srinivasan, G.

Tamizhmani and A. Spanias, "Dropout and Pruned Neural Networks

for Fault Classification in Photovoltaic Arrays," IEEE Access, 2021.

Authorized licensed use limited to: ASU Library. Downloaded on May 12,2023 at 00:37:33 UTC from IEEE Xplore. Restrictions apply.

