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Abstract— In this paper, we describe solar array monitoring 

using various machine learning methods including neural 

networks. We study fault detection using a quantum computer 

system and compare against results with a classical computer.  

We specifically propose a quantum circuit for a neural network 

implementation for Photovoltaic (PV) fault detection.  The 

quantum circuit is designed for two qubits.  Results and 

comparisons are presented for PV fault detection using a classical 

and quantum implementation of neural networks. In addition, 

simulations of a Quantum Neural Network are carried for a 

different number of qubits and results are presented for PV fault 

detection. 

I. INTRODUCTION 

Wireless sensor networks and signal processing algorithms 

have been used for monitoring the voltage (V), current (I), 

irradiance and temperature of utility scale Photovoltaic (PV) 

arrays [1]. Originally, these studies explored the utility of 

standard statistical methods such as the Mahalanobis criterion 

[1] and later begun exploring the use of machine learning 

(ML) methods for PV fault detection. Fault detection using 

standard K-means methods has been reported in [2], [3], 

neural network methods (NN) in [4], [5], and positive 

unlabeled (PU) learning in [6]. Real-time study of faults on the 

DC side is enabled by wireless sensors and actuators. In 

particular, a smart monitoring device (SMD) has been 

developed in [7] and is shown in Figure 1. The SMD has 

sensors and actuators (relays) along with a microcontroller and 

an RF unit. It provides V-I, temperature, and irradiance data 

which can be shared on the Internet for analytics and control. 

It was shown that a solar array fitted with web-connected 

SMDs [3] forms an Internet of Things (IoT) network [8] 

where every solar panel can be accessed and provide data 

from remote locations. The SMD enables fault detection [9] 

and topology optimization [10]. With the use of measurements 

and relays, mal-functioning panels can be bypassed, and 

shaded panels can be reconnected from series to parallel to 

equalize radiance.  

 

Topology reconfiguration 

using SMDs and machine 

learning has also been studied 

and results have been 

presented in [11]–[13].  

 
Figure 1 The smart monitoring device 

(SMD) for solar panel monitoring and 
control.  

In this paper, we explore machine learning algorithms for 

solar array monitoring and control. We study specifically 

neural network solutions for fault detection. We then 

implement a quantum computing [14] based neural network 

system.  We present two implementations based on a design of 

a quantum circuit. The first hybrid quantum neural network 

(hybrid QNN1) is run with two qubit and four-qubit 

resolution. The second is an improved quantum circuit (hybrid 

QNN2) running with two-qubits. In our study , we show the 

accuracy, CPU run time, and the number of epochs used for 

QNN training. 
 

The overall system used for solar array analytics, fault 

detection, and topology reconfiguration is shown in Figure 2. 

SMDs are installed one on each solar panel and provide data 

and the overall status on the PV array. The SMDs provide data 

via wireless connection and every panel has a MAC address 

and can be accessed after user authentication. These devices 

have relays and can form a switching matrix that can be used 

to form different panel connections.  

 
 

 

Figure 2 Smart solar array monitoring system integrated with quantum and 

classical machine learning fault diagnosis algorithms.  

Fault Detection and Classification 

The reliability of PV systems is essential in terms of 

maintaining the supply of power to the grid. Typically, solar 

panels are connected in series to form strings and then strings 

are connected in parallel. For example, in our solar array 

testbed facility at the ASU research park [3], we have 13 

panels connected in series to form a string and then 8 such 

strings connected in parallel. PV faults studied include ground 

faults, series and parallel arc faults, soiling, and shading. Each 

of these faults has its own characteristics. Results and 

comparisons are presented for NN-based detection. The study 

on pruned NN is based Lottery Ticket Hypothesis 

optimization method [15]. 

The rest of the paper is organized as follows. Section II 

describes ML methods for fault detection. Section III presents 

work on the implementation of NN using quantum computing. 

Finally, section IV presents concluding remarks.  
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II. MACHINE LEARNING FOR PV FAULTS 

Clustering PV faults using ML is useful for detecting and 

identifying the type of fault [16]. The problem has been 

handled before using statistical outlier detection techniques 

[2]. ML training requires sizeable data sets that cover array 

behavior for each fault condition. A comprehensive PV fault 

dataset does not currently exist and gathering real-time data 

for different fault conditions is difficult. For this reason, we 

used two data sets, namely the NREL data [17] and a synthetic 

dataset generated using the Sandia PV model [18]. The NREL 

PVWatts [18] includes data on 4 commonly occurring faults, 

as well as the standard test conditions of PV arrays. It covers 

the following categories: shaded, soiled, short-circuit, and 

degraded modules. The data was obtained for a period of one 

year and included irradiance, temperature, and maximum 

power measurements. In our classical computing fault 

detection simulations, we first examine neural networks and 

compare them against three supervised ML algorithms, 

namely, the Random Forest Classifier (RFC), the k-Nearest 

Neighbor (kNN), and the Support Vector Machine (SVM). We 

studied a set of 9-dimensional custom input features. The 

dataset contains a total of 22000 samples. We used a 22000 x 

9 feature matrix to profile and compare the ML algorithms.   

A. Neural Network Classifier for Fault detection 

The NN architecture in Figure 3 uses the feature matrix as the 

input layer. It has five hidden layers consisting of six neurons 

each. Training is performed using standard backpropagation. 

The activation function in each neuron is a hyperbolic tangent, 

with a final SoftMax output activation function to estimate the 

fault type. Our simulations presented in the results section use 

70% of the labeled data for training and the rest split evenly 

for validation and testing. Classification results on fault 

detection with comparisons to standard ML algorithms are 

presented in this section.  Neural network simulations with 

quantum computing architectures are described in Section III. 
 

 
Figure 3 Neural Network for PV fault classification. 

B. Random Forest Classifier 

The Random Forest Classifier (RFC) is a classification 

algorithm based on an ensemble of decision trees. A decision 

tree is constructed by a set of input features from a randomly 

sampled batch of the dataset. RFC involves two hyper-

parameters: the number of decision trees and the depth of the 

decision tree. RFCs are capable of modeling complex data sets 

and are robust to outliers [19]. 

B. The k-Nearest Neighbors 

The k-nearest neighbor algorithm (kNN) [20] is a simple non-

parametric classifier, where classification is based on local 

membership scores. In the training phase, a similarity measure 

for each data point with its closest k neighboring data points is 

stored. To classify a test sample, similarity scores between the 

test sample and all other data points are calculated, and the 

class label assigned is the label corresponding to the majority 

of k closest samples based on the similarity score.  

C. The Kernel SVM 

Kernel SVM is a soft margin classifier robust to outliers. 

Computing the soft margin classifier is equivalent to 

minimizing the loss function, 
 

 (1) 
 

where,  is a hyper-parameter which regularizes the weights 

and  is the kernel function. The loss function in equation 1 

can be reduced to a quadratic programming problem and 

solved by a convex solver. Common choices of kernel 

functions  are polynomial kernels, Gaussian radial basis 

kernels, and hyperbolic tangent kernels. The success of SVM 

depends on the appropriate choice of kernel. 

D. Fault Detection Results and Comparisons 

We compare the performance of the neural network fault 

detection against standard machine learning algorithms such 

as the RFC, SVM, and kNNs. These comparisons are 

developed on a classical computer. The RFC classifier was 

trained with 300 estimators with a depth of 50, the SVM was 

trained with radial basis kernel, and kNN with 30 nearest 

neighbors. We observe that techniques such as the RFC overfit 

the training data with a near-perfect training accuracy while 

the test accuracy is 86.32%. The SVM has a lower accuracy of 

85.31% and a test accuracy of 83.29%. We also observe that 

the kNN gives a training accuracy of 87.15% and a test 

accuracy of 85.76%. Compared to these methods, the feed-

forward NN provides the best results. In our studies, we 

obtained a training accuracy of 91.62% and a test accuracy of 

89.34% using a feed-forward three-layer neural network. 

Furthermore fault detection research based on pruned and 

dropout neural networks [38] has also provided encouraging 

results.  In addition to using classical computing methods for 

fault detection, Quantum computing (QC) implementations are 

also considered in this paper. Motivated by the promise of 

Quantum speeds, we attempted to design a quantum circuit for 

fault detection. The QC simulations are based on a two-qubit 

system and are described in the next section. Additional 

simulations with different numbers of qubits are also 

presented.   

III. PV FAULT DETECTION USING A QUANTUM NN  

In this section, we present preliminary work on Quantum NN 

(QNN) [21] parameter estimation that is based on state vector 

networks [22]. This system introduces a variational ansatz that 

can be used to represent the quantum ground states [23]. The 

implementation of a QNN system is currently constrained 

because of the limited availability and cost of a quantum 

computing system. A hybrid quantum-classical NN [24], [25] 

is proposed and evaluated for PV fault detection. The 

architecture for the hybrid quantum-classical NN is shown in 

Figure 4. This system uses the quantum circuit for the hidden 

layer of the neural network. For the PV Fault Detection, we 
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run experiments only for  fault/no-fault detection. This is 

because of constraints to work with manageable low-precision 

quantum circuit designs that have  a limited number of qubits.  

The hybrid QNN Design 

The first step in building the hybrid QNN is to understand 

the detection problem. Quantum algorithms take advantage of 

the feature space by using the large dimensionality of quantum 

Hilbert space [26]. For this problem, we will operate the 

hybrid QNN by taking a quantum circuit with a feature map 

that would be analogous to the conventional SVMs. 

The ML package is in the Qiskit SDK [27] and is called Qiskit 

Machine Learning [28]. Qiskit introduces a two-layer QNN 

that takes the parameterized operator to leverage a gradient 

framework to provide the backward pass. This two-layer 

hybrid QNN is designed and evaluated for PV fault/no-fault 

detection. 
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Figure 4 Hybrid quantum-classical System for QNN simulations. 

 

The quantum expression of this quantum circuit is in the 

hidden layer. The circuit represents neurons that exploit 

quantum computing and encompass a nonlinear mapping 

capability. We developed preliminary hybrid QNN training 

simulation results, which we will validate later on an actual 

quantum computer with PV fault data.  

The hybrid quantum-classical approach also allows for 

interfaces to existing ML toolkits. Included are a PyTorch [29] 

connection, a NN regressor, and a NN classifier. This 

quantum-enhanced design takes the current classical 

implementation and transforms different parts of the algorithm 

into the quantum platform. 

A. The hybrid QNN for Fault Detection 

In this paper, we present two hybrid QNN models for fault 

detection. The first, hybrid QNN1 is based on the combined 

circuits presented in Figure 7 and Figure 5. The second hybrid 

QNN2 is based on combined circuits in Figure 12 and Figure 

13. The two hybrid QNN models are compared against the 

classical NN. The classical NN and hybrid QNN use the same 

Adam optimization [30] algorithm.  However, the loss 

function differs between the two systems. The hybrid QNN 

uses the binary cross-entropy function [31], while the classical 

NN used a categorical cross-entropy function [32], [33]. To 

evaluate these systems we use the NREL dataset [17]. was 

chosen for both the classical NN described in Section II In our 

study, we used 80% and 20% of the data for training and 

testing, respectively. 

We present results in terms of accuracy, CPU run time, 

training epoch count, and the number of qubits used. 

B. The hybrid QNN1 

The hybrid QNN1 for PV fault detection will use the two-

layer QNN. To build this two-layer QNN, the feature map and 

ansatz quantum circuits are used. The quantum gates in the 

circuits will be used as the NN parameters [21].  

We design the QNN using the ZZFeaturemap provided by the 

Qiskit Aqua [34] and the algorithms package in the Qiskit 

SDK. The feature map is used to select the number of qubits 

based on the input dimension of the data and its repetitions or 

the circuit depth. The initial design is based on a 2-qubit 

architecture in order to manage the computational complexity 

and time of the quantum simulations (Figure 7). 

For the ansatz [35], [36], we choose the variational form as 

RealAmplitudes, from the Qiskit. An ansatz is the sequence of 

gates applied to specific wires of the system. For the hybrid 

QNN, we use these types of gates and the associated 

parameters for optimization and determination of the QNN 

weights. Figure 5 shows the quantum circuit for the two-qubit 

system. To complete the two-layer QNN, these two circuits 

are combined. As a note, to connect these two circuits, the 

same number of qubits between the feature map and ansatz 

circuit is needed. 

 
Figure 5 Quantum circuit of the hybrid QNN1 - RealAmplitudes [37]. 

 

To compare the hybrid QNN and the classical NN, we use the 

confusion matrix. The classical NN is evaluated as shown in 

Figure 6 and is found to have an accuracy of 95.29%. 

 

Figure 6  Confusion matrix of the classical NN.
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Figure 7 Quantum circuit of the feature map [34] used for the hybrid QNN1. 
 

.

Our evaluation of the hybrid QNN1, starts by presenting one 

sample convergence curve with twenty-five epoch training as 

shown in Figure 8. The figure shows the binary cross-entropy 

learning curve for the model.  As it is seen the algorithm 

converges. 

 

Figure 8 Binary Cross Entropy Learning Curve for 25 Epochs. 

We present a similar confusion matrix for the fault detection 

on hybrid QNN1. This model has an accuracy of 87.8%, as 

seen in Figure 9. 

 

Figure 9 Confusion matrix of the hybrid QNN1 with 25 epoch training with 

87.8% accuracy.  

To explore further the quantum ML models, we attempt to 

improve the system by updating the quantum circuits as shown 

in the next subsection. 

C. Varying parameters in hybrid QNN1 

To determine if we can increase the accuracy, we began our 

experimentation with hybrid QNN1. For this, we explored 

changing the number of epochs (5, 10, 18, 25, 100) and 

varying the number of qubits (i.e., 2, 3, 4)  

We experimented with different epoch counts. We present one 

of our findings where we increased our count to a hundred. 

We observe that the accuracy increases to 93.80%, as shown 

in Figure 10.  

 

Figure 10 Confusion matrix of the hybrid QNN1 with 100 epoch training with 

93.89 % accuracy. 

Using the same feature map and ansatz, we updated the circuit 

to support additional qubits. Here, we note a smaller increase 

in accuracy as we increase the number of qubits. For example, 

for four qubits, our experiment resulted in an accuracy of 

90.2%, as seen in Figure 11. 

 

Figure 11 Confusion matrix of the hybrid QNN1 with 4 qubits with an 

accuracy of 90.2% 

D. The hybrid QNN2 

For hybrid QNN2, we examined ways to modify the feature 

map and ansatz’s depth (or repetition) for this quantum circuit. 

Qiskit allows for both circuits to repeat. By repeating, 

additional gates are added, thereby increasing the depth of the 

circuit. These new quantum gates can be used for 

implementing NN parameters that are updated during the 

learning process. For example, in Figure 12, the P, Ry, and Rz 

gates represent the parameters that may be updated during the 

learning process.  
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Figure 12 Updated feature map [34] (‘Z’, ‘X’, ‘ZY’) used hybrid QNN2.

We attempt to determine whether these additional parameters 

in the circuit have any impact on the learning process. We 

modified the feature map and the ansatz that was previously 

used for our hybrid QNN. For the feature map, a 

PauliFeatureMap was used (Figure 12). In this circuit, we 

created a gate combination of ‘Z’, ‘X’, and ‘ZY’. For the 

ansatz of the circuit in Figure 13, we updated it to use the 

built-in EfficientSU2 as our function. As seen in Figure 13, we 

also repeated the base circuit to increase the number of 

parameters. This test is to determine whether  these additional 

gates improve the learning rate. The goal was to increase the 

accuracy with fewer epochs. For this model validation, the 

epoch size was set to eighteen. 

 
Figure 13 Updated anastaz used hybrid QNN2.  

Running hybrid QNN2, we see in Figure 14 that our accuracy 

is now 90.5%. 

 

Figure 14 Confusion matrix of the hybrid QNN over 18 epochs. 

E. The State Vector validation of hybrid QNN 

As the last step in validating the hybrid QNN algorithm, we 

used state vector validation. This is a method to validate the 

algorithm without using a quantum simulator. In this 

simulation, we obtain a result of 93.8% accuracy. 

 

Figure 15 Confusion matrix of a hybrid QNN2 over 18 epochs. 

F. Discussion of hybrid QNN 

In our study, we are attempting to develop the best possible 

quantum model for fault detection given restrictions in the 

simulation execution and logistics. We examined the epoch 

length, increasing the number of quantum gates that can be 

used for representing parameters in a NN and the number of 

qubits. In our base circuit, we found that increase in epoch 

count helps improve accuracy. We also found that the increase 

in quantum gates helped reduce the epoch count. As we can 

see, epoch count is the major area to investigate given the 

difficult constraints of quantum circuit design and simulations. 

As we run with quantum simulators, the time for each epoch is 

an important factor in developing a circuit. The next step in 

our research are: a) investigate different QNN models to find 

an efficient balance of gates to be used as parameters for NN, 

b) adding GPU acceleration to the classical set, and c) possibly 

expand to add the complete fault classification tasks for the 

NREL dataset  [17]. 

G. Fault Detection Results and Comparisons 

The hybrid QNN models show similar detection test accuracy 

as the classical NN fault detection discussed in this research. 

The hybrid QNN designs presented in this paper are still not as 

computationally efficient as the classical NN in time or 

accuracy but show some promise. The following table presents 

initial results from our preliminary fault detection testing.  As 

it can be seen, the accuracy of detection with the QNN is close 

to the classical NN detection presented in Section II.  

In TABLE I. , we observe that increasing epochs has an 

impact on accuracy. However, the time to run this simulation 

is an important factor in building circuits to run on a quantum 

simulator. We next compare the increase in quantum gates 

versus the increase in qubits. Here, we find that the increase in 

quantum gates has a similar performance increase as adding 
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additional qubits. Furthermore, in some cases we observed 

similar accuracy with fewer epochs. 

TABLE I.  FAULT DETECTION RESULTS AND COMPARISONS 

Fault Detection 

Algorithm 

Training 

Epoch 

CPU 

Time 

Detection 

Accuracy 

Classical NN 300 20 sec 95.39% 

Hybrid QNN1  (2 qubits) 25 10 hours 87.8% 

Hybrid QNN1  (2 qubits), 100 ~4 days 93.89% 

Hybrid QNN1  (4 qubits), 25 ~2 days 90.2% 

Hybrid QNN2  (2 qubits) 18 8 hours 90.5% 

These initial findings are important in determining the next 

steps in our research. The goal for fault detection is to build a 

quantum circuit with the appropriate number of quantum gates 

to increase accuracy yet keep the needed epoch count 

reasonable to run the quantum simulator.  

IV. CONCLUSION 

In this paper, we explored the use of NN for fault detection in 

an effort to improve performance and robustness in utility 

scale PV arrays. The methods presented are enabled by smart 

monitoring devices and neural networks that are applied for 

fault detection. The application of NN to fault detection 

provided higher accuracy in detecting and classifying faults 

relative to standard ML methods. In addition to fault detection 

using classical NN, we also presented the implementation of 

fault detection on a quantum system. Preliminary results with 

a two-qubit implementation provide modest fault detection 

relative to full precision classical computation. However, 

when qubits were added, we did not observe significant 

improvements in accuracy. We believe this is due to the 

quantum-related noise added when more qubits are used in the 

simulation. Furthermore, the QNN simulations required long 

computational times that prevented long training periods.    

Therefore, faster computing is needed in order to enable 

additional iterations (epochs) with the neural network.  The 

intensive computing time required with the quantum simulator 

was in excess of four hours on an ordinary computer. 

Nevertheless, we anticipate elevating the accuracy 

significantly by gaining additional access to quantum 

simulators and designing higher resolution quantum circuits. 

To further improve accuracy and high qubit simulations of 

QNN, methods to reduce quantum measurement error have to 

be integrated.    
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