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Abstract—Photovoltaic array topology optimization was shown 

to improve efficiency in renewable energy plants. Previous 

studies demonstrated improvements via simulation at the level of 

7-12% or more. In this paper, we describe solar array topology 

optimization systems based on quantum machine learning 

algorithms. The idea of using quantum machine learning can be 

useful in cases where the objective is to optimize power output in 

large sites with several thousands of panels. We specifically 

propose and assess a quantum circuit for a neural network 

implementation for photovoltaic topology optimization. Results 

and comparisons are presented using classical and quantum 

neural network implementations. In addition, solar array 

topology optimization simulations and comparisons using a 

quantum neural network are described for different numbers of 

qubits. 

I. INTRODUCTION 

Sensors and signal processing have been previously used 
for fault detection, topology optimization, and shading 
prediction [1]–[9]. Sensors typically monitor the voltage (V), 
current (I), irradiance, and temperature of each solar panel in a 
photovoltaic (PV) array [10]. It was shown that real-time solar 
array monitoring and control of a utility-scale PV array can be 
accomplished by smart monitoring devices (SMDs) [11]. The 
SMD (Fig. 1) has sensors, actuators (relays), a 
microprocessor, and an RF unit to transfer data to servers and 
the Internet for analytics. 

Signal processing and machine learning (ML) algorithms 
can be used along with SMD measurements to detect faults, 
reconfigure connections, and predict shading. In fact, internet-
connected SMDs attached to PV panels enable remote 
operators to manage the solar array as an Internet of Things 
(IoT) system [12]. 

 
Fig. 1 The smart monitoring device (SMD) for solar panel monitoring and 
control. 
 

Machine learning for PV array management has been 
studied in [5], [11], [13]–[15]. In addition, a study on using 

quantum computing methods for PV fault detection was 
reported in [16]. In particular, hybrid quantum neural 
networks were designed for PV fault detection [17]. The 
motivation for quantum machine learning solutions is to 
address PV analytics in situations involving multiple large-
scale solar energy plants with thousands of PV panels. 

In this paper, we study quantum machine learning 
algorithms for solar array topology optimization. We study 
specifically quantum neural network (QNN) solutions for 
optimizing the power output by switching across PV 
connection topologies. We design custom QNN circuits for 
use in dynamic topology switching. Our study is carried out at 
the simulation level and considers switching across two 3x4 
topologies, namely series-parallel (SP) and total cross tied 
(TCT). Results from the QNN simulations are obtained for 
different numbers of qubits. QNN and classical NN are 
compared, and results are provided in terms of confusion 
matrices. 

The overall system diagram used for PV monitoring and 
topology reconfiguration is shown in Fig. 2,  SMDs installed 
on each solar panel provide voltage, current, and temperature 
data which is being used for analytics and PV array control. In 
addition, these devices have relays and can form connection 
topologies that can be switched upon instruction from an 
operator or an algorithm.  

 
Fig. 2 Smart solar array monitoring system integrated with quantum machine 
learning topology reconfiguration algorithms. 
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The rest of the paper is organized as follows. Section II 
describes classical ML methods for topology optimization. 
Section III presents the implementation of NN using quantum 
computing and Section IV presents concluding remarks.  

II. CLASSICAL ML FOR TOPOLOGY OPTIMIZATION  
Partial shading on solar panels can detrimentally affect the 

power output from PV arrays. It was shown that PV topology 
reconfiguration is a viable method for improving the power 
output under shaded conditions [1].  

 
Fig. 3 Solar array connection topologies used in our study:  a) on the left, the 3 
x 4 series parallel (S-P), and b) on the right the 3 x 4 total cross tied (TCT) 
array configurations. 
 

At a high level, topology reconfiguration involves 
switching the electrical connections between the panels based 
on input control signals. Various methods of reconnecting the 
panels have been proposed in [1], [2] to maximize the PV 
array output. In general, PV arrays are connected in the SP 
topology consisting of strings of panels connected in parallel. 
Additionally, it has been shown in [2] that significant power 
improvements can be obtained when the array is connected in 
a cross-tied manner, for e.g., TCT array. In the TCT topology 
(Fig. 3), every row consists of PV modules connected in 
parallel, and the resultant rows are connected in series. We 
note that these two topologies behave identically under perfect 
irradiance conditions. However, when there are mismatches 
and partial shading, one of the topologies can outperform the 
other in terms of power production. This naturally motivates 
the use of a ‘smart’ algorithm that automatically reconfigures 
the array into one of the topologies based upon the extent of 
shading or panel level irradiances. In this context, ML for 
topology reconfiguration has emerged as a popular approach 
and the authors of this paper have provided preliminary results 
in [6]. ML models, in particular, neural networks (NN) learn 
different patterns of the PV panel irradiances and predict the 
optimum configuration. Importantly, the use of ML for this 
application produces an end-to-end system that learns a 
function to directly map irradiances to the optimal topology. 

 
Fig. 4 Classical neural network for performing topology reconfiguration used 
in our study. The model produces an end-to-end mapping between irradiance 
and the optimal topology. 
 

  
Fig. 5 MATLAB Simulink models for generating synthetic data:  a) on the 
left, the 3 x 4 Series Parallel (S-P), and b) on the right, the 3 x 4 Total Cross 
Tied (TCT) array configurations. 
 

Fig. 4 provides a functional diagram of the classical NN 
which can be used for topology reconfiguration. The following 
subsections describe the synthetic data generation process for 
training the neural network and the preliminary results. 

A. Synthetic Data Generation for Topology Optimization 

In this paper, we consider 3 x 4 PV arrays for data 
generation. Synthetic irradiance values for every panel of the 3 
x 4 array have been generated using a binary mapping rule 
which is described in [6]. Basically, we assigned “0” to a 
panel that is unshaded and “1” to a shaded panel and 
populated 4096 irradiance profiles. The irradiance profiles are 
drawn from the uniform distribution. The uniform distribution 
is sampled for randomly chosen binary assignments and 
generates over 5000 instances of partial shading profiles. The 
topology reconfiguration can be viewed as a supervised 
learning problem that requires a completely labeled dataset 
with 5000 irradiance profiles for 12 PV panels (3x4 arrays). 
The label vector y is generated by passing every irradiance 
instance at a constant temperature of 27°C to a Simulink 3 x 4 
Series SP and TCT (Fig. 3, 4) arrays and then we compare the 
maximum power generated.   

B. Results using a Classical Neural Network  

To perform PV topology reconfiguration, we trained a NN 
with three layers of 150 neurons each. The entire synthetic 
dataset was divided into the training and test set with a ratio of 
70:30 respectively. The NN was trained for 150 epochs with a 
learning rate of 0.0001. When the trained NN was evaluated 
on the test set we obtain a test accuracy ~95%. Improvement 
in output power based on dynamic topology reconfiguration 
was estimated by calculation to be ~7%. In the next section a 
Quantum computing (QC) implementations are presented.  

III. HYBRID QUANTUM NN FOR TOPOLOGY 
RECONFIGURATION 

In our previous work [17], a hybrid Quantum Neural 
Network (QNN) (Fig. 6) was designed for PV fault detection. 
The hybrid QNN [18] system was designed and modeled using 
a state vector simulation [19].  
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Fig. 6 Hybrid quantum-classical neural network architecture used for fault 
detection [17]. 
 

As observed in Table 1, we previously [17] examined 
various epochs and qubit choices to determine whether there 
were advantages in accuracy for fault detection. The results of 
our previous studies yielded an accuracy of about 90%, which 
was very encouraging. Motivated by previous results of Table 
1, we launched a study of topology optimization, which we 
present in this paper. 

TABLE 1. PREVIOUS FAULT DETECTION RESULTS AND COMPARISONS [17] 

Fault Detection 

Algorithm 

Training 

Epoch 

Detection 

Accuracy 

Classical NN 300 95.39% 

Hybrid QNN1  (2 qubits) 25 87.8% 

Hybrid QNN1  (2 qubits), 100 93.89% 

Hybrid QNN1  (4 qubits), 25 90.2% 

Hybrid QNN2  (2 qubits) 18 90.5% 

 

Our study will again explore the hybrid QNN model and 
create an updated quantum circuit for topology optimization.  

A. The Circuit-Centric Classification Model 

We present a recently proposed model based on circuit-
centric classification [20] for designing a hybrid QNN. This 
model is built using a three-step process, as shown in Fig. 7. 

 

 
Fig. 7 Circuit-Centric design for new hybrid QNN based on the model circuit 
from [20]. 
 

First, the system prepares the data by performing a state 
preparation (S) by organizing the classical data into qubits to 
run the quantum circuit. Next, the qubits are processed 
through a model circuit, relying on a basic Unitary transform 
(U). Finally, qubit measurements are taken and transformed to 
binary data. 

B. Hybrid QNN with Circuit-Centric model 

With the most recent quantum circuit approach described 
in [20], a new hybrid quantum-classical neural network is 

designed. This design also allows the addition of additional 
NN layers for topology optimization. To simulate the QNN, 
we used Pennylane [21] and the circuit-centric model is shown 
in Fig. 8.  

 
0: ──RX(1.00)──Rot(0.24,0.89,0.08)─╭C───────╭X─┤  <Z> 
1: ──RX(2.00)──Rot(0.28,0.22,0.73)─╰X─╭C────│──┤  <Z> 
2: ──RX(3.00)──Rot(0.83,0.29,0.63)────╰X─╭C─│──┤  <Z> 
3: ──RX(4.00)──Rot(0.31,0.93,0.44)───────╰X─╰C─┤  <Z> 
Fig. 8 Circuit centric model [20] based on angle embedded and strongly 
entangled unitary matrix (e.g. 4 qubit with 1 layer) . 

 

The circuit example in Fig.8 prepares the input data into 
four qubits by angle embedding of the classical data. A unitary 
transform of the circuit is used and this consists of a rotation 
gate (Rot) with each qubits being entangled. We define Rot, 
Eq. (1), as an arbitrary single-qubit rotation where the weights 
are those used when training our system.  

 ���, �, �� � �	����
����	��� � 

�������� �⁄ cos�� 2⁄ � ������� �⁄ sin�� 2⁄ �
������ �⁄ sin�� 2⁄ � ������� �⁄ cos�� 2⁄ � �       (1) 

 
The circuit is updated by adding the strongly entangled 

unitary matrix gate when adding additional layers. This set of 
gates is repeated at each additional layer. This is represented 
in the Rot and the representation of the entanglement, as 
shown in Fig. 9. 

C. Simulation Results 

We use the same synthetic dataset generated for the 
classical NN as shown in the previous section. As stated 
earlier, the synthetic irradiance values for every panel of the 3 
x 4 array were generated using a binary mapping rule 
described in [6], i.e., a “0” is assigned to an unshaded panel 
and “1” to a shaded panel. A total of 4096 irradiance profiles 
are generated for training. For the hybrid QNN simulation, the 
system determines whether we have the proper selection of 
unshaded or shaded panels. For the simulations, accuracy is 
defined as the process of correctly selecting the best panel 
topology, i.e., the one that will produce maximum power for a 
given shading pattern. Lastly, in the quantum 
implementations, the entire synthetic dataset was divided into 
training and test sets with a ratio of 70:30, respectively. 

Fig. 10 [A] shows the accuracy of correctly selecting the 
best panel topology for a two qubit simulation with different 
numbers of layers. The figure shows that QNN has an accurate 
prediction of 80% as the number of layers increases. Fig. 10 
[B] examines the same test but with four qubits. In this case, 
the simulations show that the accuracy predicts in the range of 
82 to 85%. Finally, we select one of the simulations and form 
and report a confusion matrix. In Fig. 11, we observe that for a 
four qubit – one-layer system, we have an accuracy of panel 
selection of 85.12%. The results of the simulation are 
tabulated in Table 2. 
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0: ──RX(1.00)──Rot(0.77,0.63,0.14)─╭C─╭X──Rot(0.04,0.69,0.19)─╭C─╭X─┤  <Z> 
1: ──RX(2.00)──Rot(0.38,0.40,0.82)─╰X─╰C──Rot(0.35,0.59,0.90)─╰X─╰C─┤  <Z> 

Fig. 9 Circuit centric model [20] based on angle embedded and strongly entangled unitary matrix (2 qubit with 2 layer). 
 

[A]  [B]  
Fig. 10 New hybrid QNN training and testing accuracy of selecting the correct panel [A] Two qubit Training and Testing with different layers (1, 2, 4, 8, 12) [B] 
Four qubit Training and Testing with different layers (1, 2, 4, 8, 12). 

 

  
Fig. 11 Hybrid QNN confusion matrix showing 85.12% accuracy for panel 
selection on the topology optimization. 
 

We now examine how the number of layers and the qubits 
affects the accuracy of the new hybrid QNN with model 
circuit design. As we can see in Table 2, the changes in the 
number of layers at four qubits were minimal. However, in 
two qubits systems, we observe that we do require at least four 
layers to reach over 75% accuracy of panel selection.. 
Furthermore, the simpler circuit only needs four qubits, one 
layer, and 30 epochs to reach 85% accuracy.  

TABLE 2 QNN TOPOLOGY RECONFIGURATION COMPARISON 
Number 

of 

Layers 

Training Validation 

2 

qubits 

4 

qubits 

2 

qubits 

4 

qubits 

1 74.37% 85.10% 69.26% 85.12% 

2 75.66% 85.27% 74.42% 83.75% 

4 75.90% 83.98% 76.56% 82.30% 

6 77.58% 84.54% 78.02% 85.31% 

12 77.17% 85.52% 76.17% 85.70% 

 

D. Recent hybrid QNN design used in topology optimization 

We trained a NN with three layers of 150 neurons to 
perform PV topology reconfiguration in the classical system. 
In the hybrid QNN, we built several models and can compare 
some of them with the classical ones, as seen in Table 3. 

TABLE 3 CLASSICAL AND QUANTUM TOPOLOGY RECONFIGURATION 
COMPARISON 

Type Qubit Layers Neuron 

vs 

gates 

Epoch Accuracy 

Classical N/A 3 150 150 ~95% 

Quantum 2 1 6 30 69.26% 

Quantum 4 1 12 30 85.12% 

Quantum 2 4 18 30 76.56% 

Quantum 4 4 36 30 82.30% 

 
As we see in Table 3, the quantum NN with four qubits is 

showing better results than the two qubit solution. With the 
classical NN having a test accuracy of approximately 95%, 
this hybrid QNN still shows promising results. This more 
recent hybrid QNN approach, based on circuit centric model 
[20], for topology optimization may still be improved upon. 
With these additional enhancements, we may bring the 
accuracy of proper selection to over 90%. With the simulation 
time and complexity of the circuit, a single-layer circuit may 
be sufficient for this type of dataset for initial testing. Further 
improvements to the four qubit, one-layer system will need 
further research. Future research will address exploring and 
studying quantum noise models with multiple Monte Carlo 
simulations and theoretical analysis. 

IV. CONCLUSION 
In this paper, we explored the use of QNN for topology 
reconfiguration in utility-scale PV arrays. The results from the 
QNN simulations for different numbers of qubits were 
presented. We observed that a QNN with only four qubits and 
one-layer gave promising results. Although, the classical NN 
provided a test accuracy of approximately 95%, the hybrid 
QNN achieved 85%. From sample simulation results and 
additional hyperparameter tuning it is anticipated that the 
QNN may achieve similar results. We have also tested a new 
circuit-centric model in the hybrid QNN which worked quite 
well. Future work will examine statistically different quantum 
noise models to reduce depolarization and dephasing errors 
[22], [23]. Adding a more accurate noise model will also 
better determine whether these hybrid QNN will run 
efficiently and accurately on current NISQ-era [24]–[26] 
quantum computers.   
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