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Abstract— Accessible rapid COVID-19 testing continues to be 

necessary and several studies involving deep neural network 

(DNN) methods for detection have been published.  As part of a 

sponsored NSF I/UCRC project, our team explored the use of 

deep learning algorithms for recognizing COVID-19 related 

cough audio signatures. More specifically, we have worked with 

several DNN algorithms and cough audio databases and reported 

results with the VGG-13 architecture. In this paper, we report a 

study on the use of quantum neural networks for audio signature 

detection and classification. A hybrid quantum neural network 

(QNN) model for COVID-19 cough classification is developed. 

The design of the QNN simulation architecture is described and 

results are given with and without quantum noise. Comparative 

results between classical and quantum neural network methods 

for COVID-19 audio detection are also presented. 

Keywords—quantum computing, quantum machine learning, 

COVID-19, cough audio, spectral features, quantum noise 

I. INTRODUCTION

Machine learning for audio detection and classification of 
breathing pathologies has been previously studied [1,2]. 
Recent studies on breathing pathologies concentrated on 
COVID-19 detection using audio cough patterns and machine 
learning [3-8].  More specifically, features obtained from 
spectrograms of COVID cough audio have been used in 
several recent studies.  One of the early challenges was the 
availability of COVID coughing audio databases.  Several 
initiatives were launched as early as the summer of 2020, and 
freely accessible databases for research became available.  One 
of the early ones was the “Coswara” dataset [4] of cough and 
other sounds from positive and negative samples of COVID-19 
audio. The “COUGHVID” dataset formed from crowd-sourced 
positive and negative cough samples across a wide range of 
demographic backgrounds was also published [5].  A more 
recent database for the DiCOVA challenge in Interspeech 2021 
was described in [9].   

The motivation to study audio-based COVID-19 features 
stems from the fact that COVID-19 causes disruptions in vocal 
tract tissues [8]. As a result, patients can generate specific 
patterns in recorded coughing audio. Several research groups 
began studying spectral features for cough audio signature 
characterization. Mel Frequency Cepstral Coefficients 
(MFCCs) [10], linear prediction models, and other statistical 
methods have previously been used as features for recognizing 
speech and audio sounds [11-13]. Our team also explored 
several audio features for neural network-based 
COVID 
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detection. Our studies [6,7] determined that log-mel 
spectrogram representations provided the best results. Other 
studies [14] also determined that log-mel spectrograms 
generalize better than those based on traditional speech signal 
optimized features. 

Our previous machine learning studies relied on classical 
neural networks and produced 60-82% accuracy results. In 
particular, our study that used log-mel spectrograms in 
conjunction with the VGG-13 neural network [6] provided 
more than 80% detection accuracy and was ranked relatively 
high in the DiCOVA 2021 challenge.  Motivated by these 
results and also our recent efforts to develop hybrid quantum 
neural network models, we explore in this paper the use of 
QNN models for COVID-19 detection. The use of quantum 
computing for machine learning was the subject of several 
studies which were surveyed in [15].   

One of the main challenges in quantum machine learning is 
access to actual quantum computers, which are currently 
expensive. However, several companies have developed 
quantum simulators [16-20] and provide access to quantum 
simulators through cloud or desktop computing. In addition, 
access to actual quantum computers is also provided, though 
current availability is very limited for large tasks.  One of the 
greatest challenges is the management of quantum noise [21] 
and quantum precision, both of which will be examined in this 
paper specifically for COVID-19 cough audio classification. 

Quantum machine learning simulation models require the 
design of quantum circuits. Data flow and qubit precision 
models must be formed in order to train and classify audio 
signatures. Audio processing and classification studies using 
QNNs have been published in [22,23]. Motivated by these 
studies, we began examining the feasibility of  COVID-19 
detection using QNNs. Challenges include quantum precision 
and handling quantum noise. In addition, access to simulators, 
design of quantum circuits, and latency in training QNNs are 
anticipated problems. Nevertheless, the potential in the future 
to take advantage of the benefits of fast and secure 
computation is motivating our study. Contributions of this 
study include a) the design of hybrid QNN algorithms for 
COVID-19 detection, b) characterization of the performance 
with different numbers of qubits, and c) effects of quantum 
noise.  The rest of the paper is organized as follows. Section II 
presents the quantum circuit design process,  Section III gives 
our results, and Section IV presents our conclusions.   
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II. HYBRID QUANTUM NEURAL NETWORK DESIGN 

A. Challenges, Dataset and Preprocessing 

Challenges in running the quantum machine learning 
simulations included long run times and careful pre-processing 
of data to extract robust features. To produce detection results 
comparable to previous classical computing simulations, we 
needed to optimize feature extraction and the QNN model. 
This involved identifying and centering of the cough audio 
signal within the log-mel spectrograms. 

For this application, COVID-19 coughing audio from the 
DiCOVA [9] dataset, supplemented with samples from the 
COUGHVID [5] dataset, was used. The audio files were 
preprocessed using silence detection. A minimum cough length 
of 200ms was established during this segmenting. Additionally, 
200ms of starting and ending silence was kept for each audio 
segment.  Log-mel spectrograms were then generated from the 
audio files with a hop length of 128, a window length of 1024, 
and 60 mel bands. 

B. Quantum Circuit and Feature Extraction 
We explored several tools for designing quantum circuits 

including PennyLane [24]. PennyLane is a Python quantum 
computing library developed by Xanadu to simulate qubits, 
quantum circuits, and quantum machine learning architectures. 
This library allows for both coherent [25] and incoherent [26] 
quantum noise simulation. Coherent quantum noise is a more 
predictable, systematic noise that can result from quantum 
hardware that is not properly calibrated. Coherent noise, in 
general, may be filtered out using a standardized process across 
the hardware. Incoherent quantum noise tends to be less 
predictable than coherent quantum noise. The PennyLane 
quantum computing library can also simulate state vector 
qubits based on purely mathematical operations. A state vector 
simulator generally provides the ideal results in a quantum 
computing simulation. 

Feature extraction was performed using two different 
quantum circuits, one constructed with two qubits and one with 
four qubits. The two-qubit circuit is shown in Fig. 1, and the 
four-qubit circuit is shown in Fig. 2. The quantum circuit 
features either two or four qubits depending on the simulation, 
each with an RY gate, then Unitary gates in which a set of 
gates with continuously changing weights performs rotations. 

 

Fig. 1. A block diagram representation of the two-qubit circuit used for audio 
feature extraction. 

Finally, the qubits are measured and mapped to classical 
bits. This particular quantum circuit was constructed using 
random circuit parameters [27] due to the robustness of random 
quantum circuits at relatively low complexity [28]. This 
particular instance of a random quantum circuit was generated 
using the PennyLane [24] RandomLayers template in which 

randomly chosen qubits are acted upon by layers of randomly 
chosen single-qubit rotations and 2-qubit entangling gates. We 
use a random circuits sampling process similar to that proposed 
in [29]. In our simulation, we used a range of one to four 
quantum circuit duplication layers during feature extraction to 
compare results. One quantum circuit layer corresponds to one 
set of RY, Unitary, and measurement gates. Duplication of this 
circuit combination refers to additional layers. Quantum 
convolution was performed during feature extraction of the 
audio data, in which the input audio was convolved with many 
applications of the same quantum circuit. 

 
Fig. 2. A block diagram represents the four-qubit quantum circuit used for 
feature extraction in the audio classification task. 

C. Neural Network Models and Training 
Quantum-classical hybrid architectures [30-33] are 

evaluated in this study. Quantum convolutional 
(“quanvolutional”) layers are combined with a classical neural 
network model for the classification of the audio data as seen 
in Fig. 3. Benefits of quantum-classical hybrid systems, when 
compared to fully quantum-based deep learning systems, 
include dramatically reduced training time and reduced 
memory requirements. We note that a recurrent neural network 
(RNN) [44] was previously shown [45] to perform well for 
audio classification tasks. 

Three different models were trained and evaluated in this 
study: an RNN, a convolutional neural network (CNN), and a 
quanvolutional neural network (QNN). All three neural 
networks were trained using an 80/20 train/test split and were 
trained for 30 epochs. Test accuracy is tabulated in Table II. 

 
 

Fig. 3. A basic framework for the quantum ML data pipeline used in this 
study. Quantum convolution is performed in order to extract features from 
log-mel spectrograms and the features are then used to train a classical 
recurrent neural network.  

III. RESULTS 
Our SenSIP team has previously engaged in several 

machine learning studies and presented results in speech, audio 
and various sensor and energy applications [34-42]. Quantum 
circuits for machine learning applications have been 
demonstrated in [30,31,42].  In the following, we present sound 
recognition results using quantum neural networks starting first 
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with clean speech and then continuing with COVID-19 
coughing sounds obtained from crowdsourced databases.  

A. QNN Results with Clean Speech Signals 

To validate the aforementioned quantum circuit designs, we 
first run the quantum simulations with clean speech signals.  
Our results with clean speech are tabulated in Table 1 and 
demonstrate that our quantum designs and our simulation 
software worked very well providing more than 90% accuracy.  

                                  TABLE 1.  QNN RESULTS FOR CLEAN SPEECH. 

Method 
 

Test Accuracy 

(%) 

QNN - 2 Qubits, 1 Layer 93.6 

QNN - 4 Qubits, 1 Layer 96.4 

 

From our simulation results listed in Table 1, we observe 
that even a single “quanvolutional” layer QNN gives a 
performance at the level of over 90%.  Training set accuracy 
was better than 97% in both cases. Additional simulations with 
more layers may provide somewhat improved accuracy but 
only if the NN hyperparameters are carefully tuned or 
optimized [43] . In fact, our simulations with additional layers 
at this point, without lengthy optimization of hyperparameters, 
did not provide improved accuracy.  For this reason, our 
simulations for coughing audio data presented next are also 
based on a single layer QNN.  

B. Results Obtained for Coughing Sounds  

In this section, we used coughing audio data for COVID-19 
detection. As expected, the COVID data sets presented more 
challenges in terms of segmentation than clean speech.  
Spectrograms and features were re-computed for each 
simulation. In addition, we considered different types of 
quantum noise. The classical RNN achieved a test accuracy of 
79.4% and the CNN model achieved 73.0%. Lastly, the QNN 
provided test accuracy ranging from 74.6% to 78.8% with no 
noise. Training set accuracy, as expected, was higher than 90% 
in some cases. Test set results (best case) are shown in Table 2. 

TABLE 2. A SUMMARY OF THE RNN, CNN, AND QNN RESULTS. RESULTS 

FROM QNN SIMULATIONS WITH AND WITHOUT QUANTUM NOISE ARE SHOWN. 

Method 
 

Test Accuracy (%) 

RNN 79.4 

CNN 73.0 

QNN - 2 Qubits, no noise 74.6 

QNN - 4 Qubits, no noise 78.8 

QNN - 2 Qubits with Quantum 

Noise, Bit Flip circuit, p = 0.01 

60 

QNN - 4 Qubits with Quantum 

Noise, Bit Flip circuit, p = 0.01 

60.3 

Classical VGG-13 78.3 

 

We also present in Table 3 results with quantum noise 
models incorporated. We started with a simulation of noise 
with a single-qubit bit flip (Pauli X) error channel model. The 
simulations with quantum noise for 2 and 4 qubits produced 

around 60% accuracy. Hence we see a loss of accuracy of more 
than 14% with the bit flip noise model presented in Table 2. To 
examine further the effects of quantum noise, we designed 
another noisy circuit. Depolarization was used on the qubits 
with different probabilities of occurrence. This error circuit is a 
generalization of the bit flip and phase flip for the qubit 
channels. These results (best case) are captured in Table 3.  

TABLE 3. A SUMMARY OF QNN WITH DIFFERENT PROBABILITY OF 

DEPOLARIZATION ERROR SIMULATION RESULTS. 

Method, 

probability 

Best Test 

Accuracy (%) 

2 Qubits, p=0.001 71 

2 Qubits, p=0.01 73 

2 Qubits, p=0.1 71 

2 Qubits, p=0.2 65 

4 Qubits, p=0.001 73 

4 Qubits, p=0.01 75 

4 Qubits, p=0.1 67 

4 Qubits, p=0.2 65 

 

In general, we observed from the simulations of Table 3, 
that accuracy was slightly reduced when utilizing a quantum 
neural network relative to a classical NN. Accuracy decreased 
by approximately 10-12% when adding quantum noise. As 
expected, we also observed that the feature extraction process 
took a considerably longer time to execute than classical 
methods. In general, feature extraction time increased 
proportionally with the number of qubits used in the 
simulation. We note again that training set accuracy was higher 
than 87% in some cases. 

IV. CONCLUSION 

In this study, we demonstrated the ability of a quantum 
neural network to classify audio samples using features 
extracted from log-mel spectrograms. The quantum circuit was 
validated first with clean speech data and then examined with 
COVID-19 coughing audio data. Specifically, we utilized a 
curated dataset containing samples from the DiCOVA 2021 
and COUGHVID datasets. Using an algorithm with a 2 qubit-1 
layer quantum circuit placed before an RNN, we achieved a 
test accuracy of 74.6%. We also performed simulations using 
an algorithm with a 4 qubit-1 layer quantum circuit. This 
algorithm achieved a test accuracy of 78.8%. We note that our 
QNN simulations are currently taking several hours to execute, 
especially at the QNN training phase. Additionally, simulations 
were performed with added quantum noise. Both the 2 qubit-1 
layer and 4 qubit-1 layer algorithms achieved an accuracy of 
around 60% with quantum noise added when tested using a 
single-qubit bit flip error channel. When tested using simulated 
depolarization error, the accuracies ranged from 65-73% for 
both the 2-qubit and 4-qubit algorithms. In future work, we 
will statistically validate these initial best case results using 
Monte Carlo simulations. We will also optimize our QNNs 
through careful tuning of hyperparameters and also by using 
quantum noise error mitigation techniques. We believe that 
these steps on QNN will provide accuracy in excess of 80% as 
was the case with the classical VGG-13 shown in Table 2.  

Authorized licensed use limited to: ASU Library. Downloaded on May 12,2023 at 00:42:27 UTC from IEEE Xplore.  Restrictions apply. 



ACKNOWLEDGMENT 
 

Portions of this study have been supported by the SenSIP 
center and the REU award 1659871. Additional support was 
obtained from the SenSIP NSF I/UCRC project Award 
1540040.  

REFERENCES 
 

[1] C. Bales et al., "Can Machine Learning Be Used to Recognize and 
Diagnose Coughs?," 2020 International Conference on e-Health and 
Bioengineering (EHB), 2020, pp. 1-4.. 

[2] R. X. A. Pramono, S. Bowyer, and E. Rodriguez-Villegas, “Automatic 
adventitious respiratory sound analysis: A systematic review,” Plos One, 
vol. 12, no. 5, 2017. 

[3] A. Imran et al., “Ai4covid-19: Ai enabled preliminary diagno- sis for 
covid-19 from cough samples via an app,” Informatics in Medicine 
Unlocked, vol. 20, p. 100378, 2020. 

[4] N. Sharma et al., “Coswara–a database of breathing, cough, and voice 
sounds for covid-19 diagnosis,” arXiv preprint arXiv:2005.10548, 2020. 

[5] L. Orlandic, T. Teijeiro, and D. Atienza, “The coughvid crowd- sourcing 
dataset: A corpus for the study of large-scale cough anal- ysis 
algorithms,” arXiv preprint arXiv:2009.11644, 2020. 

[6] M. Esposito, S. Rao, V. Narayanaswamy, and A. Spanias, “COVID-19 
detection using audio spectral features and machine learning”. IEEE 
Asilomar Conf. on Circuits, Systems & Comp., Monterrey, Oct 2021. 

[7] S. Rao, V. Narayanaswamy, M. Esposito, J. Thiagarajan, and  A. 
Spanias, “Deep Learning with hyper-parameter tuning for COVID-19 
Cough Detection,” In 2021 12th IEEE IISA, pp. 1-5). IEEE, July 2021 

[8] T. F. Quatieri, T. Talkar and J. S. Palmer, "A Framework for 
Biomarkers of COVID-19 Based on Coordination of Speech-Production 
Subsystems," in IEEE Open Journal of Engineering in Medicine and 
Biology, vol. 1, pp. 203-206, 2020.. 

[9] Muguli, A., Pinto, L., R, N., Sharma, N., Krishnan, P., Ghosh, P.K., 
Kumar, R., Bhat, S., Chetupalli, S.R., Ganapathy, S., Ramoji, S., Nanda, 
V. (2021) DiCOVA Challenge: Dataset, Task, and Baseline System for 
COVID-19 Diagnosis Using Acoustics. Proc. Interspeech 2021  

[10] Vergin, R., O'Shaughnessy, D., and  Farhat, A., “Generalized mel 
frequency cepstral coefficients for large- vocabulary speaker-
independent continuous-speech recognition,” IEEE Transactions on 
speech and audio processing, 7(5), 525-532, 1999.  

[11] A.S.Spanias,“Speech Coding: A tutorial review,” Proceedings of the 
IEEE, vol. 82, no. 10, pp. 1541–1582, 1994. 

[12] G. Wichern, J. Xue, H. Thornburg, B. Mechtley, and A. Spanias, 
“Segmentation, indexing, and retrieval for environmental and natural 
sounds,” IEEE Trans. on ASLP, vol. 18, no. 3, pp. 688–707, 2010. 

[13] P.C. Loizou and A.S. Spanias, “High-performance alphabet  
recognition,” IEEE Trans. on SAP, pp. 430– 445, Nov 1996. 

[14] M.Huzaifah,“Comparison of time-frequency representations for 
environmental sound classification using convolutional neural net- 
works,” arXiv preprint arXiv:1706.07156, 2017. 

[15] G.S.Uehara, A. Spanias and W. Clark, "Quantum Information 
Processing Algorithms with Emphasis on Machine Learning," 12th  
IEEE IISA, July 2021, pp. 1-11 

[16] CIRQ : Google quantum AI, from https://quantumai.google/cirq  

[17] A. Cross, "The IBM Q experience and QISKit open-source quantum 
computing software." In APS March Meeting. pp. L58-003. 2018. 

[18] J. Pino et al, “Demonstration of the QCCD trapped-ion quantum 
computer architecture,” arXiv preprint arXiv:2003.01293. 

[19] Cloud computing services: Microsoft Azure, from 
https://azure.microsoft.com/en-us/  

[20] E. A. Sete, W. J. Zeng and C. T. Rigetti, "A functional architecture for 
scalable quantum computing," 2016 IEEE ICRC, 2016, pp. 1-6,. 

[21] Clerk, A. A., Devoret, M. H., Girvin, S. M., Marquardt, F., & 
Schoelkopf, R. J. (2010). Introduction to quantum noise, measurement, 
and amplification. Reviews of Modern Physics, 82(2), 1155. 

[22] Chaharlang, Javad et al. “A Novel Quantum Steganography-
Steganalysis System for Audio Signals. Multimedia Tools and 
Applications,” 79. 10.1007/s11042-020-08694-z. 

[23] J. Qi & J. Tejedor (2021). Classical-to-Quantum Transfer Learning for 
Spoken Command Recognition Based on Quantum Neural 
Networks. arXiv preprint arXiv:2110.08689. 

[24] Bergholm, et al,  (2018). Pennylane: Automatic differentiation of hybrid 
quantum-classical computations. preprint arXiv:1811.04968. 

[25] Tsang, M., & Caves, C. M. (2010). Coherent quantum-noise 
cancellation for optomechanical sensors. Physical review 
letters, 105(12), 123601. 

[26] Boulant, N., Emerson, J., Havel, T. F., Cory, D. G., & Furuta, S. (2004). 
Incoherent noise and quantum information processing. The Journal of 
chemical physics, 121(7), 2955-2961. 

[27] Kalachev, G., Panteleev, P., Zhou, P., & Yung, M. H. (2021). Classical 
Sampling of Random Quantum Circuits with Bounded Fidelity. arXiv 
preprint arXiv:2112.15083. 

[28] B. Fefferman, “The power of random quantum circuits,” Simons 
Institute for the Theory of Computing. May 6, 2020. 

[29] Bouland, et al. On the complexity and verification of quantum random 
circuit sampling. Nature Phys 15, 159–163 (2019). 

[30] G. Uehara, V. Narayanaswamy, C. Tepedelenlioglu, A. Spanias, 
“Quantum Machine Learning for Photovoltaic Topology Optimization,” 
2022 IEEE 13th IISA, July 2022. 

[31] G. Uehara, S. Rao, M. Dobson, C. Tepedelenlioglu and A. Spanias, 
"Quantum Neural Network Parameter Estimation for Photovoltaic 
Fault,”  Proc. IEEE IISA 2021, July 2021 

[32] X. Hong and C. Maojun, “Hybrid quantum neural networks model 
algorithm and simulation,” in 5th International Conference on Natural 
Computation, ICNC 2009,  vol. 1, no. 1, pp. 164–168.  

[33] M. A. Metawei, H. Said, M. Taher, H. Eldeib, and S. M. Nassar, 
“Survey on Hybrid Classical-Quantum Machine Learning Models,” in 
Proceedings of the 2020 IEEE International Conf. on Communications, 
Computing, Cybersecurity, and Informatics, CCCI 2020, 2020, pp. 1–6. 

[34] Spanias, T.Painter, V. Atti, Audio Signal Processing and Coding, Wiley, 
2007. 

[35] U. Shanthamallu and A. Spanias, Machine and Deep Learning 
Algorithms and Applications, Morgan & Claypool Publi,  2021. 

[36] K. Jaskie and A. Spanias, Positive Unlabeled Learning, Morgan &  
Claypool Publishers, AI and Machine Learning, 2022. 

[37] U. Shanthamallu, J. J. Thiagarajan, H. Song, A. Spanias, "GrAMME: 
Semi-Supervised Learning using Multi-layered Graph Attention 
Models," IEEE Trans. NNLS, V. 31, Oct. 2020. 

[38] J. Thiagarajan, Narayanaswamy, V., Rajan, D.,Liang, J., Chaudhri, A., 
Spanias, A., (2021). Designing Counterfactual Generators using Deep 
Model Inversion. Neurips 2021 

[39] K. Thopalli, S. Katoch, J. J. Thiagarajan, P. Turaga, and A. Spanias. 
"Multi-Domain Ensembles for Domain Generalization." In NeurIPS 
2021 Workshop on Distribution Shifts: Connecting Methods and 
Applications. 2021. 

[40] U. Shanthamallu, Thiagarajan, J. J., and Spanias, A. , “Uncertainty-
Matching Graph Neural Networks to Defend Against Poisoning Attacks. 
In Proc.  of the AAAI,2021.,  Vol. 35, pp. 9524-9532, 2021. 

[41] J. Thiagarajan,  V. Narayanaswamy, R. Anirudh, P. Bremer, and A. 
Spanias. "Accurate and Robust Feature Importance Estimation under 
Distribution Shifts." Proc. AAAI Conference, v. 35, pp. 7891-98. 2021. 

[42] M. Yarter, G. Uehara, A. Spanias, “Implementation and Analysis of 
Quantum Homomorphic Encryption,” 2022 IEEE 13th IISA, July 2022. 

[43] M. Malu, G. Dasarathy, A. Spanias,” Bayesian Optimization in High-
Dimensional Spaces: A Brief Survey,”   Proc. IEEE 12th IISA 2021, July 
2021. 

[44] Medsker, L. R., & Jain, L. C. (2001). Recurrent neural networks. Design 
and Applications, 5, 64-67. 

[45] Graves, A., Mohamed, A. R., & Hinton, G. (2013, May). Speech 
recognition with deep recurrent neural networks. In 2013 IEEE 
ICASSP (pp. 6645-6649). IEEE, 2013. 

 

Authorized licensed use limited to: ASU Library. Downloaded on May 12,2023 at 00:42:27 UTC from IEEE Xplore.  Restrictions apply. 


