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Abstract—Growing interest in the field of quantum computing
is fueled by quantum computers projected ”quantum supremacy”
in speed and security. The potential for ultra-high speeds may
produce a dramatic change in data science, machine learning,
analytics, and information processing. This research study will
focus on encryption algorithms where quantum computing may
affect protocols and deciphering codes. Specifically, homomor-
phic encryption (HE) enables mathematical operations to be
performed on encrypted data without having to decrypt the
data in the process. Quantum homomorphic encryption (QHE)
enables quantum circuits to be performed on encrypted qubits.
In this research experience for undergraduates (REU) study,
we design quantum circuits to implement QHE on a quantum
teleportation circuit. The teleportation algorithm is profiled in
terms of performance and complexity and comparative results
are provided for encoded versus unencoded circuits. This work
serves as a building block for encrypting more complex quantum
algorithms such as Quantum Neural Networks (QNN).

Index Terms—encryption, quantum computing, qubit, quan-
tum teleportation, cryptography, homomorphic encryption

I. INTRODUCTION

As quantum computing hardware develops its advantages
are gradually proven. This development happens in parallel
with tools for designing and simulating quantum circuits.
These tools allow researchers to design, test, and compare
algorithms on quantum computer against classical ones. Exe-
cuting information processing and machine learning tasks over
massive data sets can be incredibly time-consuming depending
on the problem. The projected increase in processing speed
of quantum computers could revolutionize the field of data
science and machine learning. Initial exploration into quantum
neural networks (QNNs) has shown promise through their
robustness [1], but still need to be improved given current
limitations caused by quantum measurement noise.

Quantum computing hardware exists but access is currently
limited and generally expensive. Access to quantum simula-
tors, however, is free for university, research, and education
purposes. Several companies have developed quantum simula-
tors, including Google [2], IBM [3], Microsoft [4] and Rigetti
[5]. The simulators enable researchers to implement their
algorithms and assess the performance of quantum machines
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with regard to quantum noise [6], precision, and quantum
circuit complexity.

With the development of multi-stage highly complex in-
formation processing algorithms speed, reliability, and data
security are of primary importance particularly in the intel-
ligence community [7]. A solution to the problem of data
security is encrypting an algorithms parameters so that only
certain users with the corresponding encryption key can use
it. This process is complicated when the owner of a privileged
algorithm wants to lease its use to a third-party. For example,
access to a plain-text machine learning algorithm could be
used to reverse engineer model parameters and obtain access
to original data [8]. Current neural networks also frequently
use cloud computing resources to access data which poses
additional security risks to the models [9]. Homomorphic
encryption is a potential solution to these problems.

Homomorphic encryption was introduced by Rivest, Adle-
man, and Dertouzos [10] and allows the evaluation of arbitrary
functions on encrypted data. In other words, data can be
encrypted and passed into an algorithm to obtain an encrypted
result. When decrypted the solution will be the same as if you
passed in unencrypted data. A flow chart of this process can be
seen in Fig. 1. This method secures both a user’s data and the
parameters of the algorithm they are using. In this study, we
will use quantum simulation software to implement a quantum
teleportation algorithm with homomorphic encryption.

Fig. 1: Conceptual Diagram of Homomorphic Encryption.
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II. LITERATURE REVIEW

Homomorphic encryption requires special considerations
to ensure arithmetic operations preserve encrypted data’s in-
tegrity. A ”noise budget” is imposed by the parameters selected
to generate an encryption key. Performing operations on a
ciphertext expends this budget and expending it all prevents
a solution from being retrieved. In classical computing, an
encryption method is considered to be ”fully homomorphic”
if arbitrarily complex computations can be performed on
encrypted data [11]. The first fully homomorphic encryption
method was realized in 2009 by Gentry by using ideal lattices
[12] and subsequent methods have been designed using other
constructs such as the learning with error problem, [13] and
the ring learning with error problem [14].

Information processing tasks on classical computers have
seen success in the development of homomorphic encryption
methods. Li et al. [15] propose an encryption method based
on non-albian rings and apply it to multiple machine learning
models including logistic regression and Naive Bayes [16].
Bellafqira et al. [17] introduce an encryption method for a se-
cure multilayer perceptron based on the composite residuosity
class problem cryptosystem designed by Paillier [18]. Graepel
et al. [19] introduce a method that they call ML Confidential
for machine learning homomorphism.

Quantum mechanics has permanently altered the field of
cryptography because it enables new algorithms that were
previously impossible. For example, Shors algorithm [20] uses
quantum properties to make the integer factoring problem
[21] tractable using of qubits. This realization made every
public key cryptosystem and all the data encrypted with this
protocol vulnerable to attack by powerful quantum computers.
Another example of change introduced by quantum properties
is quantum key distribution (QKD) [22]. In this case, an eaves-
dropper can always be detected when creating and distributing
encryption keys by using the no-cloning theorem. The security
risk posed by quantum encryption-breaking methods is of great
interest to defense and commercial entities and has motivated
the creating of post-quantum encryption techniques [23].

Naturally, investigation into homomorphic encryption for
quantum computers is underway [24]–[26]. Quantum homo-
morphic encryption requires special considerations to function
on qubit operations and quantum circuits. Quantum technology
inherently amplifies the noise concerns of encryption. At
this time, there is no fully homomorphic encryption method
that can execute arbitrary quantum circuits on encrypted data
[24]. Despite this, there are existing methods that allow for
a limited application of this form of encryption. Tan et al.
[25] have developed a quantum homomorphic encryption
method that enables a bounding on the information accessible
to an unauthorized observer. Additionally, there is a proven
homomorphic encryption method for circuits of low T-gate
Complexity proposed by Broadbent and Jeffery [26]. This
method uses a quantum one-time pad [27] as the basis for
encryption over Clifford group circuits and makes the method
fully homomorphic by adding a method to encrypt T-gates.

Quantum teleportation is an algorithm that reproduces a
prepared qubit state by using an entangled qubit [28]. This
allows for the ”teleportation” of information stored by a
qubit with two classical bits measured from the transmitters
system. Generally, this problem is posed as a transmitter
named ”Alice” who prepares a qubit and wishes to share it
with a recipient named ”Bob”. In a practical setting, this tele-
portation could be used to transmit qubit states within quantum
processing units [29], or across vast distances. Teleportation
across a large distance could be enabled through a 3rd party
provider that facilitates the qubit entanglement for Alice and
Bob. Introducing this third party also introduces the possibility
that the system be hijacked, and the qubit state received by
the 3rd party provider instead of Bob. QHE is a somewhat
trivial solution to this scenario as Alice could keep her two
preparation qubits to herself and transmit the classical bits
measured from them through a secure channel. If the provider
does have access to these qubits, QHE could prevent the
interception of sensitive information by encryption prior to
handing off the qubits. Without knowledge of the encryption
key the classical bit measurements would be corrupted and an
incorrect qubit state would be teleported.

III. PROPOSED SOLUTION

This project attempts to implement the Broadbent et al.
[26] encryption method for quantum homomorphic encryption
over Clifford group quantum circuits. This set of circuits
allows for the implementation of an encrypted qubit telepor-
tation algorithm which will be performed to observe how
encryption impacts quantum circuit depth, and coherence.
Quantum circuit depth is the length of the longest path of
quantum gates in a circuit. Coherence refers to the stability of
information held by each qubit and decoherence occurs when
noise in a quantum circuit distorts a qubits state destroying the
information held therein. The quantum teleportation algorithm
was selected because it satisfied two requirements. Firstly,
the quantum teleportation consists of Hadamard, X, Z, and
CNOT gates [29] which are all stabilizer circuit elements.
According to the Gottesman-Knill theorem, [30] stabilizer
circuit elements can be simulated efficiently on transistor-
based computers. While possible to efficiently simulate a quan-
tum teleportation algorithm on transistor-based computers, real
world applications of the algorithm require the use of qubits.

Qiskit was used to implement the Broadbent et al. encryp-
tion method for Clifford group circuits. To achieve this goal
four steps must be accomplished. These steps are key genera-
tion, encryption, quantum circuit application, and decryption.
First, to encrypt the qubits two binary strings were randomly
generated with length ’n’ equivalent to the number of qubits
in the operation. These strings served as a simple quantum
one-time pad encryption key.

[a0, a1, ..., an], [b0, b1, ..., bn] (1)

Encryption over Clifford group circuits is achieved by
applying a Pauli gate Q as a one-time pad to any wire
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in a quantum circuit. Any set of Clifford gates C that are
subsequently applied to the circuit produce an encrypted result
to the algorithm. Decryption can then be achieved by applying
the conjugate Pauli gate Q’. This relationship between Clifford
and Pauli gates can be seen in equation 2.

CQ = Q′C (2)

The bits in string A correspond to an X gate applied to
the associated qubit ’i’ and the bits in string B correspond
similarly to a Z gate. The application of a random set of X
and Z gates to each qubit serves as a quantum one-time pad
for encryption of the input data.

Q = Xa1Y b1 ⊗ ...⊗XanY bn (3)

From here, homomorphic encryption is achieved by updat-
ing the keys after the application of each quantum gate based
on a set of update rules [26]. Two key update rules were
required to apply the quantum teleportation, an update for the
CNOT gate, and an update for the Hadamard gate. The CNOT
gate update rule requires updates for bit ’i’ associated with the
control wire, and bit ’j’ associated with the target wire. Bit i
of key A is unchanged while bit i of key B is XOR’ed with
the bit j of key B. A similar update is applied to bit j of key A.
Equation 4 details the update for the control wire and equation
5 details the target wire.

fa,i ← fa,i, fb,i ← fb,i ⊗ fb,j (4)

fa,j ← fa,i ⊗ fa,j , fb,j ← fb,j (5)

The Hadamard gate requires swapping bits between key A
and B for qubit ’i’ that the gate is applied to.

fa,i ← fb,i, fb,i ← fa,i (6)

Fig. 2 shows an example quantum circuit of the one-
time pad encryption and decryption. The circuit shows two
randomly initialized qubits followed by a single CNOT gate
with qubit 0 as the control and qubit 1 as the target. Equation
7 shows the original key and the updated key after performing
the CNOT gate.

[1, 0], [1, 1]→ [1, 1], [0, 1] (7)

Fig. 2: One-Time Pad and Key Update Rule Applied to CNOT
Gate.

IV. RESULTS

The first step to a functional QHE method was creating a
quantum one-time pad. This was accomplished through Qiskit
by creating an encryption key to apply random X and Z gates
to each qubit in a quantum circuit. Two random binary strings
of length ’n’ equivalent to the number of qubits in the quantum
circuit are generated. The associated X and Z gates are then
applied based on the binary string’s composition.

Encryption was tested on a 3-qubit quantum teleportation
circuit where qubits 0 is used as a source and qubit 2 is the
destination. Fig. 3 shows the full quantum teleportation circuit.
Qubit 0 is initially prepared in the —0¿ state then randomly
rotated along the Y and Z axis. After teleportation this rotation
is undone by rotating qubit in the opposite directions so that
it returns to the —0¿ state. A successful teleportation will
then result in a measured bit 0 every time. Fig. 4 applies the
one-time pad to the circuit without decrypting the result while
Fig. 5 shows the encryption and decryption of the circuit after
updating the keys based on the gates used.

Fig. 3: A 3-Qubit Quantum Teleportation Circuit.

Fig. 4: A 3-Qubit Encrypted Quantum Teleportation Circuit.

After designing each circuit, they were simulated using
Qiskit’s ”qasm” simulator. Each circuit was simulated over
1024 shots and counts for each circuit were plotted in his-
tograms. Quantum teleportation of the qubit state initialized
on qubit 0 to qubit 2 is successful if the measured result is a 0.
As seen in Fig. 8a and 8c there was a 100 percent success rate
of the circuit when it was applied without encryption, and with
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Fig. 5: A 3-Qubit QHE Quantum Teleportation Circuit.

QHE. When the circuit was encrypted but never decrypted as
in Fig. 4 the teleportation was unsuccessful as the qubit state
received by qubit 2 was different from the original random
state. This can be seen as a 4 percent simulation accuracy in
Fig. 8b.

For an n qubit system consisting of M stabilizer circuit
elements with quantum depth D the cost of homomorphic
encryption is minimal. The number of quantum gates in
a circuit range from the trivial unencrypted M gates to a
maximum of M + 4n total gates. The worst-case scaling is
linear with the number of qubits needed for the algorithm.
The maximum requires an X and Z gate to encrypt and
decrypt each qubit. Quantum circuit depth ranges from the
original circuit depth D to D + 4. The maximum impact on
depth occurs only in the case where a single qubit is both
encrypted and decrypted with X and Z gates. This increase
in circuit depth had no impact on the coherence of the
quantum teleportation circuit but could cause problems with
coherence for circuits with greater depth. Particularly, circuits
that approach the threshold for decoherence may become
unstable when encrypted. Extending this encryption method
to include T gates increases the required gates by more than
4n and requires auxiliary qubits to decrypt operations. [26]

TABLE I: Quantum Teleportation Accuracy Over 1024
Counts.

Simulation Accuracy (%)
Unencrypted 100

Encrypted 4.39
QHE 100

There was no cost to conduct these experiments due to
the availability of Qiskit and the qasm simulator backend.
Simulations were designed and conducted using a commercial
laptop with an Intel core i7 processor.

V. CONCLUSION

Our SenSIP labs have conducted several quantum comput-
ing studies during the last year including quantum machine
learning for audio [31] and energy applications [32], [33]. In
fact, there are several parallel research and training studies

(a) Unencrypted

(b) Encrypted

(c) QHE

Fig. 6: Simulation Counts for Each Quantum Circuit.

in quantum machine learning [34] design that have been
conducted. Other quantum computing education studies have
been reported in [35], [36].

In this REU study, we successfully implemented quantum
homomorphic encryption over quantum stabilizer circuits. This
enables the secure computation of these circuits with little
impact on quantum circuit depth relative to the unencrypted
circuits. Although rudimentary, compared to classical homo-
morphic encryption, this is a first step towards providing
security for quantum algorithms. Future work should seek to
implement full quantum homomorphic encryption by includ-
ing a protocol for T-gate circuits. Extending the set of circuits
that can be encrypted would enable the encryption of quantum
information processing algorithms such as quantum neural
networks. Secure computation over these quantum algorithms
would provide protection to complex quantum algorithms and
the large data sets that they could harness.
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