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Abstract—We present in this paper a method to compare scene 

classification accuracy of C-band Synthetic aperture radar (SAR) 

and optical images utilizing both classical and quantum 

computing algorithms. This REU study uses data from the 

Sentinel satellite. The dataset contains (i) synthetic aperture 

radar images collected from the Sentinel-1 satellite and (ii) 

optical images for the same area as the SAR images collected 

from the Sentinel-2 satellite. We examine classical neural 

networks to classify four classes of images. We then explore 

Quantum Convolutional Neural Networks and deep learning 

techniques in terms of their training and classification 

performance. A hybrid Quantum-classical model that is trained 

on the Sentinel1-2 dataset is proposed, and its performance is 

then compared against the classical model in terms of 

classification accuracy. 

Keywords— SAR, radar, REU, Neural Networks, VGG16, deep 

learning, Quantum convolutional neural network. 

I. INTRODUCTION 

The need for workforce development in quantum information 

science was emphasized in several quantum computing 

initiatives and presidential committee announcements. In this 

NSF Research Experience for Undergraduates (REU) research 

and education project, an undergraduate Electrical 

Engineering student at Arizona State University (ASU) was 

immersed in quantum machine learning (QML) studies for 

SAR and Optical scene classification. Scene classification, 

using deep learning techniques is having a great impact in the 

field of remote sensing [1].  This REU effort addresses some 

of the challenges surrounding SAR datasets and explores 

feature extraction and QML [2].  Students and their mentors  

began this REU study in 2022 by participating in “bootcamp” 

training in digital signal processing, machine learning (ML)  

basics, and quantum computing. Lecture topics included 

basics on fast Fourier transforms, quantum Fourier transforms, 

image processing, denoising techniques, and fundamentals of 

machine learning [3].  Simple ML concepts and algorithms 

were introduced using J-DSP [4], MATLAB, and Python. The 

REU student was co-mentored by a PhD student and the ASU 

faculty PI of the REU. In addition, the REU student 

participated in weekly research update sessions where she 

presented weekly progress. Our REU efforts and the process 

we use to recruit, train and embed undergraduate students in 

research are described in [5,6]. Recent and past statistics on 

our REU program are given in evaluation reports [7]. 
 
The topic of scene classification from satellite images was 

chosen because of challenging surveillance applications that 

are important to some of our industry and government 

sponsors. Imaging applications include navigation, space 

exploration, iceberg and weather tracking, and surveying the 

effects of global warming [8]. Challenges in using ML for 

image classification include a) finding a labeled dataset with 

optical and corresponding SAR images b) denoising the SAR 

images c) selecting an appropriate ML algorithm and d) 

designing QML simulation circuits for optical and SAR 

datasets. In our study, datasets from the Sentinel satellites are 

used. The Sentinel satellites are a part of the Copernicus space 

program of the European Space Agency (ESA) [1]. One of the 

main goals of this program is to ensure data continuity for 

applications in ocean, atmosphere, and land monitoring [1]. 

Six different satellite missions are encompassed in this 

program. All six missions are focused on ensuring data 

integrity for land monitoring. In our study, we focus on 

images from two satellites, namely, Sentinel-1 and Sentinel-2. 

Both satellites provide reliable conventional remote sensing 

images obtained by synthetic aperture radar and optical 

sensors [1].  

 

The SEN1-2 dataset consists of 282,384 pairs of 

corresponding image patches. These images are collected 

across the globe and include various meteorological seasons, 

including summer and fall. More details of the SEN1-2 dataset 

can be seen in the database section of this paper. Given the 

complex nature of the Sentinel1-2 dataset, there is a need for 

new techniques to extract spectral details from the images.  
 

In this paper, we describe the classical and quantum ML 

approaches to classify images from the Sentinel 1-2 

dataset. One of the main REU project objectives is to use 

QML approaches for image classification and compare them 

against classical ML. The quantum classification approach 

here uses hybrid quantum neural network (QNN) architectures 

such as the one shown in Figure 1.  

 
Fig. 1.  Hybrid Quantum Neural Network Architecture [2]. 



 

 

QNNs have been used in various imaging, audio, and other 

classification applications [9,10]. Our classification databases 

include four categories of images, namely: Agriculture, 

Grassland, Barren land, and Urban. For classical neural 

network architecture, we decided to explore the visual 

geometric group VGG-16 [9,11] classifier.  
 

 
Fig. 2. The VGG16 Architecture [9]. 

 

Initially, we trained a classical convolutional neural network 

(CNN) on our dataset. We obtained low accuracy, and we 

concluded that this initial  CNN model was not well suited for 

our dataset. We then began examining a VGG-16 model. This 

improved our classification accuracy to 85.04%. The VGG16 

architecture can be seen in Figure 2 [9]. Once classical 

classification was performed, we trained the dataset using a 

“quanvolutional” neural network. 
 

The rest of the paper is organized as follows. Section II 

presents  a brief literature review. In Section III, we describe 

the architecture adopted, the pre-processing stage, and feature 

extraction strategies for classical methods. In Section IV, we 

describe quantum machine learning approaches and quantum 

simulation circuit designs. We report our results in Section V. 

In Section VI, we provide concluding remarks. 

II. LITERATURE REVIEW 

A. Classical SAR Image Analysis 

Synthetic Aperture Radar (SAR) is a microwave remote 

sensing method. The use of SAR and optical images for edge 

detection and image classification has found several 

applications through the years. It uses impulse compression 

which increases the resolution distance and provides a two-

dimensional map of the radar reflectivity of the scene.  SAR 

images can be hard to process due to speckle noise, making it 

difficult to decipher the edges in the image [8]. Two essential 

steps in processing SAR images are edge detection and feature 

extraction. Wang et al. proposed a dual-stage coupled CNN 

architecture (DCC-CNN) to classify multiple categories of 

SAR images. The DCC-CCN method consists of two parts. 

This includes a despeckling subnetwork and a classification 

network. The average classification result for the DCC-CNNs 

method was 82.19% [12].  Another classical method for SAR 

images was described by Falqueto et al. where they used 

VGG-16 (16 layers) and VGG-19 (19 layers) architectures and 

obtained an accuracy of 86.4% and 84.1%, respectively [10].  

B. Optical Images – Classical Computing 

Optical images have similarities with the way humans 

perceive their surroundings. Therefore, optical images are 

easier to understand and process [13]. Most deep-learning 

models are optimized for optical images [14]. Cheng et al. 

performed scene classification using three CNN models, 

including AlexNet, VGGNet, and GoogleNet, and the 

classification accuracy of 98.33% using GoogleNet, 98.10% 

using VGGNet, and 97.14% using the AlexNet [11].  

C. Quantum Approaches 

One of the reasons quantum machine learning is of interest is 

its ability to process large amounts of data faster than classical 

techniques. QML uses a quantum computer's increased 

computing power to integrate into a machine learning model 

[9]. One method of implementing QML is replacing a classical 

layer with a quantum layer [9].  In this method, the input data 

to the layer are encoded in qubits which result in the quantum 

representation of the input data, which is processed by the 

quantum layer. The qubits are measured and then converted 

back into classical values to be mapped to pixel output and are 

then passed on to the next layer [10]. Chen et al. described 

three different quantum techniques for scene classifications 

including a QCNN, Hybrid QCNN, and a Hybrid QCNN with 

multiple quantum layers. These three techniques achieved 

accuracies from 83%-88%, whereas the classical CNN 

achieved an accuracy of about 82%-84% [15].  

D. The Sentinel Databases 

The Sentinel-1 mission has two polar-orbiting satellites. These 

satellites are equipped with C-band SAR sensors [1]. C-Band 

SAR operates at a frequency of 4-8 GHz and is the "SAR 

Workhorse" [16,17]. Typical applications for C-Band include 

global mapping, change detection, monitoring areas with low 

to moderate penetration, ocean maritime navigation, and 

changes to arctic ice [16]. SAR is a powerful imaging 

technique that can see through all-weather types and is 

independent of daylight conditions [17,18].  
 
The Sentinel-2 mission consists of twin polar orbiting 

satellites in the same orbit [16]. They are phased at 180 

degrees to each other. The images captured from Sentinel-2 

are optical images and only use the red, blue, and green 

channels. To capture images that are useful in image 

processing, acquisition needs to be done in cloud-free 

conditions.  
 

 

 

 
Fig. 3. Paired Images from SEN12 Dataset [1]. 

 
Figure 3 gives an example of an optical image from the 

agriculture class, with the corresponding SAR image [1]. 
 

III. CLASSICAL SCENE CLASSIFICATION 

We performed classical scene classification on both the SAR 

and Optical Image Datasets. For the optical classical scene 

classification, the VGG16 and the Recurrent Neural Network 

(RNN) were used. The images were resized to 64x64 pixels 

and separated into 4 classes: agriculture, barren land, 



 

 

grassland, and urban. A flattened version of this image was 

then used to form training and testing vectors for the neural 

network [14]. We began our study using Convolutional Neural 

networks and ResNet; however, we did not obtain satisfactory 

accuracy [19]. We also began testing other ML algorithms and 

found that the VGG16 and RNN performed the best [20]. The 

Visual Geometry Group 16 (VGG16) is a standard deep 

convolutional neural network consisting of multiple layers. 

The VGG16 consists of thirteen convolutional layers and three 

fully connected layers [9, 21].  It is one of the most popular 

image recognition architectures. Using this approach, we 

obtained a confusion matrix showing an initial classification 

accuracy of 85.04% for the optical image dataset. The 

confusion matrix obtained for the classical VGG16 can be 

seen in Figure 4.  
 

 
 

Fig. 4. Confusion Matrix and Accuracy Curve for VGG16 - Optical Image 
Dataset. 

 
We initially ran the large SAR image dataset through the 

VGG16. Using this approach, we obtained a confusion matrix 

showing an initial accuracy of 77.19%. We decided to try 

another approach, using an RNN on the smaller dataset. The 

RNN gave a training accuracy of approximately 69.53%. 

More results are detailed in Table 1 and Table 2.  
 

IV. QUANTUM SCENE CLASSIFICATION 

A. Challenges, Dataset, and Preprocessing 

There were a few challenges encountered when using a 

quantum model. We experienced very long run times when 

particularly training the algorithms. In addition to long run 

times, our quantum model struggled in the classification of the 

entire dataset. Therefore, we used a smaller dataset in addition 

to the full dataset. Quantum processing also requires careful 

pre-processing in order to extract features from the data [22].  

B. Quantum Circuit and Feature Extraction 

We explored several software tools for the design and 

construction of quantum circuits as well as the simulation of 

their behavior. IBM's Qiskit can be utilized to program and 

simulate the quantum circuits, while the implementation of 

QML can be facilitated with the use of Qiskit and Keras 

frameworks [23, 24]. We also examined the use of the 

quantum Fourier transform in signal analysis [28,29].  

To perform feature extraction, we used a four-qubit quantum 

circuit [22, 25, 26]. This circuit can be seen in Figure 5. The 

circuit includes an RY gate and then Unitary gates. The 

Unitary gates are a set of gates that can perform roation 

through continuously changing weights [22, 25]. We ran 

randomized gates on each of the qubits to find which random 

circuit works the best [22, 27]. In our neural network design, 

we add a quantum neural layer at the beginning to determine if 

encoded features can be extracted from the images. In our 

example, the neural layer depends on encoding initialization, 

quantum circuit parameters, and decoding measurement [21, 

25]. The neural network architecture with a quantum neural 

layer can be seen in Figure 6.  
 

 
Fig. 5. A 4-Qubit Quantum Circuit for Image Classification. 

 

 
Fig. 6. Neural Network Architecture with Quantum Neural Layer. 

C. Neural Network Models and Training 

A Quantum-classical hybrid architecture is evaluated in this 

REU research. Quantum convolutional layers 

("quanvolutional") are combined with a classical neural 

network model for the classification of SAR and optical 

images into four classes. Benefits for a quanvolutional neural 

network include dramatically reduced training time and 

reduced memory requirements [22, 26]. Other studies that 

used QNNs for various applications include [30-37]. 
 
We used an RNN and a VGG16 in our quanvolutional model. 

Both neural networks were trained using an 80/20 train/test 

split and were trained for 10 epochs. The Keras machine 

learning package was used in Python for the implementation 

of our algorithm [24]. Due to the larger dataset struggling to 

be processed on a quantum simulator, we used a smaller 

dataset to test our algorithm with the SAR images. The hybrid 

classical quantum model for SAR scene classification can be 

seen in Table I and Table II. 
 

Although the classification accuracy was less than the 

classical ML algorithm, with more data the Quantum 

convolution model converges faster, using fewer epochs. This 

can be seen in Figure 7 and Figure 8. 

 
Fig. 7. RNN Loss and Accuracy Results of Classical (blue) and Quantum (red) 

with increased number of data points. 



 

 

 
Fig. 8. VGG16 Loss and Accuracy Results of Classical (blue) and Quantum 

(red) with increased number of data points.  

 

V. DISCUSSION OF RESULTS 

A. Classical and Quantum VGG results for a large dataset  

We first ran the full SAR image dataset through a classical 

VGG16 and a VGG + Quanvolutional Neural Network. The 

full dataset size consisted of 16,000 images. The classical 

VGG16 network had a training accuracy of about  ~77%. We 

then ran the images through a VGG16 and a quanvolutional 

neural network, which gave a training accuracy of 66.72%. 

The rest of the results can be seen in Table I.  

TABLE I.  TESTING WITH VGG FOR LARGE SAR DATASET  

Neural 

Network 

Model 

Data Size 

(train vs 

validation) 

Accuracy 

(train vs 

validation 

vs test) 

Parameters 

VGG 

train: 1280 

validation: 
320 

train: 0.7719 
validation: 

0.7250 
test : 0.7250 

 
 

Total params: 14,722,884 

Trainable params: 8,196 
Non-trainable params: 

14,714,688 
 

VGG 
train: 1280 
validation: 

320 

train: 0.7547 
validation: 

0.7250 
test : 0.7250 

 
Total params: 14,722,884 
Trainable params: 8,196 

Non-trainable params: 
14,714,688 

 

VGG + 
Quanvoluti

on 

train: 1280 
validation: 

320 

train: 0.6414 

validation: 
0.5938 

test : 0.5938 

 
Quantum: 4 - Qubits 

Classical: 

Total params: 14,722,884 
Trainable params: 8,196 

Non-trainable params: 
14,714,688 

 

VGG + 
Quanvoluti

on 

train: 1280 
validation: 

320 

train: 0.6672 
validation: 

0.5938 
test : 0.5094 

 
Quantum: 4 - Qubits 

Classical: 
Total params: 14,722,884 

Trainable params: 8,196 
Non-trainable params: 

14,714,688 
 

 

B. Classical and Quantum RNN results for a small dataset. 

The SAR dataset is harder to process both with classical      

and quantum computing. We used an RNN on a smaller set of 

SAR images to examine if we would get better results for the 

SAR and quantum data. However, the results did not show 

great improvement. The results for the SAR data can be seen 

in Table II.  

 

VI. CONCLUSION 

This REU program provided advanced training in python 

programming, machine learning, DSP, and quantum machine 

learning. These skills were applied to produce the results in 

Optical and SAR scene classification. Classical and quantum 

algorithms were examined for both the SAR dataset and the 

optical dataset. Our simulations revealed that best results were 

obtained with the VGG16. In fact, the VGG16 performed 

better than the RNN for the SAR images; however, further 

validation and improvement is needed. The initial quantum 

simulations for both the optical and SAR datasets were below 

60% which is not satisfactory at this point. Low QNN 

performance was attributed to quantum noise effects, low 

qubit precision, and limited training of the QNN architecture. 

We emphasize that the training of the QNN in this REU study 

was also limited by exceedingly lengthy computation times 

and limited access to GPU arrays. Nevertheless, the REU 

study was innovative and impactful in that it provided a 

unique opportunity for the undergraduate student to receive 

advanced algorithmic, VGG, QNN, and programming 

experiences in a challenging field. Future work includes more 

elaborate training and optimization of the QML algorithms. In 

addition to using techniques proposed in this paper, we are 

exploring the use of methods such as image fusion and the use 

of a quantum filter, to achieve higher accuracy. 

TABLE II.  TESTING WITH RNN FOR SMALLER SAR DATASET 

Neural 

Network 

Model 

Data Size 

(train vs 

validation) 

Accuracy 

(train vs 

validation 

vs test) 

Parameters 

RNN 

train: 256 

validation: 
64 

train: 0.6953 

validation: 
0.5000 

test : 0.3125 

 
Total params: 181,317 

Trainable params: 181,181 
Non-trainable params: 136 

 

RNN 

train: 256 

validation: 
64 

train: 0.7656 

validation: 

0.3750 
test : 0.5938 

 
Total params: 181,317 

Trainable params: 181,181 
Non-trainable params: 136 

 

RNN + 

Quanvoluti
on 

train: 256 

validation: 
64 

train: 0.7148 

validation: 
0.4531 

test : 0.3906 

 
 

Quantum: 4 - Qubits 
Classical: 

Total params: 181,317 
Trainable params: 181,181 

Non-trainable params: 136 
  

RNN + 
Quanvoluti

on 

train: 256 
validation: 

64 

train: 0.7891 
validation: 

0.3906 
test : 0.3906 

 
 

Quantum: 4 - Qubits 

Classical: 
Total params: 181,317 

Trainable params: 181,181 
Non-trainable params: 136 
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