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MOTIVATION

Open problems in PV array management

JEfficiency improvement in solar energy farms;
IFaults detection and power output optimization;

IFind correlation between observed imagery and
PV circuit characteristics;

) Skyline feature prediction for better power grid
control;

PROJECT AIM

_IPower Output Optimization by skyline feature
prediction using imaging algorithms. [1]

J1Using ML techniques with sensor fusion data from
PV modules for fault detection.[2]
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The SenSIP 18kw (104 panel) experimental facility established at
ASU with industry collaborators [3].
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PROPOSED ALGORITHM

Skyline Video Linear dynamical models Probability densities over the Grassmann
manifold for different skyline attributes
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_If(t) is the sequence of texture and color features extracted
from a video of skyline indexed by time.

Overcast

_JEvolution of features is marked by

f(t) =Cz(t) +w(t),

z(t+1) =Az(t) + v(t)

w(t)~ N(O,R)
v(t)~ N(0.Q)

Where zeR? is the hidden state vector, AeR%*4

the transition matrix, Ce RP*?the measurement matrix. [4]

_JParameters of LDS model are best viewed as subspaces
formed by columns of observability matrix.

PRELIMINARY RESULTS

Index of sky clarity
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A small training set with a few segments as ‘clear’,
‘moderate cloudy’, and ‘overcast’ was used to learn a

probability density function on the Grpg_ssmannian.
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Image-based measures of sky-clarity, an attribute useful for predicting shading.
This metric was created from dynamical models of image texture, with a
manifold-based metric on dynamical model parameters. Sample images at various
times show how the index separates ‘clear skies’ and ‘hazy/cloudy skies’.
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Spatio-temporal modeling of sky videos using GIST and largest Lyapunov exponents; with
time stamps for clear sky, transition from clear-cloudy sky and cloudy sky.

ONGOING & PLANNED WORK

1 It is possible to develop early warning systems using a small network of
horizon viewing cameras.

] The transitions obtained using Lyapunov exponents can be used for prediction.

) Long term prediction can be performed by reconstructing the hidden phase-
space of the true dynamic system using delay embeddings.
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