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❑ PV array consists of 104 PV panels.

❑ Each panel has a smart monitoring device.

❑ SMDs sense current, voltage, irradiance, temp.
They have sensors, actuators, RF, Wi-Fi.

SOLAR ARRAY FACILITY AT ASU

SOLAR ARRAY SIMULINK MODEL

Simulation model used for Data generation.

❑ Real dataset from PV Watts.

❑ Fully Connected and Dropout Neural Nets
with different probabilities used.

❑ Concrete Dropout reduces overfitting.

❑ Monte Carlo simulation and K-fold cross
validation performed.

❑ Fault Detection: 4 configurations (12S-1P, 6S-
2P, 4S-3P, 3S-4P) to analyze 8 different faults.

❑ Topology Optimization: Performance with
partial shading. SP, TCT, BL, HC structures.

❑ PV data is used for training and testing.

TOPOLOGY SELECTION STRATEGY

Need for Topology reconfiguration:
Depending upon partial shading, array
topologies such as series parallel (SP),
Bridge Link (BL) or HoneyComb (HC) and
total cross tied (TCT) produce different
maximum power points

❑ Solution: Use neural nets to 
learn partial shading 
profiles and map to the 
best topology. 

❑ Accuracy ~ 93 %

Efficiency 
increased as 
much as 16% 
under partial 
shading.

PV FAULT DETECTION RESULTS

PV TOPOLOGY OPTIMIZATION

Topologies considered
(clockwise) Series-
Parallel (SP), 
Total Cross Tied (TCT), 
Honeycomb (HC) and 
Bridge Link (BL)

Architecture Train Accuracy (%) Test Accuracy 
(%)

Test Accuracy 
Change 

Fully Connected 91.62 89.34 Baseline

Concrete Dropout 91.45 89.87 0.5%

Dropout with p=0.1 89.71 89.34 0%

Dropout with p=0.2 89.29 89.13 -0.21%

Dropout with p=0.3 88.92 88.77 -0.57%

Dropout with p=0.4 87.38 88.77 -2.14%

Dropout with p=0.5 85.51 85.42 -3.92%

Random Forrest 
Classifier

100 86.32 -3.02%

KNN Classifier 87.15 85.76 -3.58%

SVM Classifier 83.51 83.29 -6.05%

Concrete and Uniform dropout (p=0.1)
reduces overfitting and achieves good
classification accuracy.

Comparison of maximum power points
for different topologies under a partial
shading condition.


