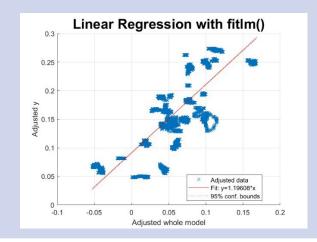
Prediction of Wideband Channel in Semi-Static Environment Using Linear Regression in Machine Learning Abdullah Al Mamun¹, Andreas Spanias² and Ahmed Ewaisha²

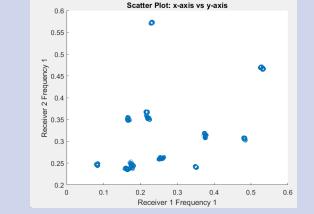

Sponsored By: NSF RET Award #1953745; [1] EMCC, A Maricopa Community College; [2] ECEE SenSIP at Arizona State University

Concepts and Relevance	The Attempt of This Work	The Attempt of This Work
Wideband Orthogonal Frequency	• We divide the wideband single frequency	• Frequency coefficients are generated
Division (OFDM) Multiplexing for	into multiple narrowband frequency	from eleven different narrowband
Wireless Networks	component;	frequency components of a given
	• The predictive estimate of a second	receiver;
Estimate Wideband Channel of the	receiver is derived from the	• Channel modeled $y = h_n \cdot x + w$
Second receiver from the First using the	characteristics of frequency coefficients	 h : Magnitude; w: AWGN;

in the first receiver

Scatter Plot b/w Rx1 & Rx2

- |h|: Magnitude; w: AWGN; •
- Predict Linear Regression Model between 'Trained' versus 'Actual'



•

Second receiver from the First using the Machine Learning Algorithm (based on linear regression)

Consider in MATLAB 0

- 'fitlm: Fit Linear Regression' 1
- 'fitnlm: Fit nonLinear Regression' 2.
- **Minimization of Mean-Squared Error** 0 (MMSE) Between Predictive & Test