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Abstract - The rise of machine learning as a commonplace 
technique for categorizing and classifying large sets of data has 
led to demand in greater computational power. Quantum 
computing is poised to provide drastically more number-
crunching capability in smaller amounts of time using 
considerably less energy. The synthesis of these fields as quantum 
machine learning has the capacity to change modern data-driven 
technology sectors. To measure and evaluate potential 
capabilities of quantum machine learning models, this project 
will see the development of a quantum neural network that can 
operate on trivial databases such as the Modified National 
Institute of Standards and Technology. These quantum neural 
networks will be benchmarked on simulated quantum systems 
initially, with the future goal of operation on actual quantum 
hardware. This will help create a baseline of understanding how 
to leverage the inherent advantages of quantum computers for 
machine learning applications.  

Index terms – Machine learning, quantum computing, neural 
networks, MNIST 

I. INTRODUCTION  

Quantum computing (QC) is a pillar of future-leaning research in 
computation. Phenomena from quantum mechanics principles such 
as superposition and entanglement are applied to quantum bits or 
qubits, then leveraged for greater parallel computation power than 
classical Boolean computing. Unlike with classical binary bits, that 
can take on the value of 0 or 1, qubits are able to take on the value of 
0, 1, or a superposition of both states. This will allow for the 
computation of enormous data sets at a fraction of the power cost, in 
a fraction of the time. The inherent parallelism of quantum computers 
lends itself to application areas such as Big Data, cryptography, 
machine learning, and more.  

 

 

 

 

 

 

 

Figure 1: Bloch sphere, graphical representation of the possible 
qubit states. 

 

Prior to discussion on the field of quantum machine learning 
(QML), it is important to provide some background on traditional 
machine learning, and application areas within. Machine learning 
(ML) is a field within computer science but has applications in 
several industries including but not limited to telecommuncations 
and power distribution [2]. Algorithms in ML are designed to 
disseminate through data sets, and differentiate data based on 
predefined categorizations. The process involves training an ML 
algorithm on a given data set, for example data on properties of a 
species of flower, to separate data based on trends. This generally 
requires larger sets of data to be performed adequately. Algorithms 
can then be tested against data of similar categorization to evaluate 
overall efficacy of the learning model.  A popular area within ML is 
development of artificial neural networks (NN), which mimic the 
way that neurons in the brain process information and are helpful in 

fields of pattern recognition, outcome prediction and data 
classification [3] for innumerable various industries. More 
discussion regarding the synthesis between QC and NNs will occur 
later in this document.  By performing these operations and 
techniques, the result is a programmatic method of "teaching" a 
computer how to classify types of data.  

The synthesis of QC and ML comes in the form of QML where the 
powerful parallelized advantages of QC can be leveraged in the 
training of ML models. This could present itself in the form of 
improved model training times, as well as actual model operation on 
much larger data sets [4]. To benchmark potential improvements 
gained from QML methodologies, a common and well-known 
dataset will be able to guide technology development. For this initial 
research proposal, the Modified National Institute of Standards and 
Technology (MNIST) database comprised of handwritten numerical 
digits will be the target focus. MNIST is a well-known and 
comprehensively solved dataset within the field of ML [4].  

 

 

 

 

 

Figure 2: Selection of handwritten characters from MNIST dataset. 

Using the python programming language and the quantum software 
development kit (SDK) Qiskit, the goal is to develop a type of 
quantum neural network (QNN). As QC hardware is still early in 
development, much of the modern work and research in the field is 
performed on quantum simulators that run on classical computer 
hardware [5]. This MNIST QNN will be benchmarked using 
quantum simulations initially, with the eventual possibility of 
operation on IBM's cloud-based quantum computer 
hardware. Several research groups are currently investigating the 
application of experimental machine learning algorithms on the 
MNIST dataset for its well-solved status [6][7][8], which further 
reinforces the selection justification. 

II. DESIGN 

Primary project focus has been on investigating hybrid neural net-
works that leverage the quantum advantages during the training 
process, while keeping the simpler stages on the classical side for 
easier development. Design of the system will leverage the IBM 
quantum software dev kit called Qiskit for the quantum compo-
nents, and the python machine learning package Pytorch for the 
classical components. 
 
Qiskit and IBM quantum computers rely on programmatic abstrac-
tion of quantum circuits as the logical representation of a quantum 
algorithm. Through the Qiskit development kit, circuits are con-
structed from python language functions, and form the basis of a 
quantum computer program. A basic circuit for creating a data flow 
pipeline called a feature map is demonstrated in Figure 3. 
 

 
Figure 3: 2 qubit feature map quantum circuit. 



 
Classical state preparation includes conditioning the data in a use-
ful format using convolution image processing operations [9] and 
passing it into the quantum neural network (QNN) which performs 
forward and backward propagation operations to determine the net-
work weights. The quantum component hooks into the classical 
layers with a torch connector module that performs the data pipe-
line construction between classical and quantum. Once complete, a 
single sample is output to be placed in the proper classification as 
decided by the QNN [10]. The dataset element is “guessed” as a 
true or false Boolean tested on each corresponding digit, for exam-
ple going through a true or false assignment to determine if it is a 
0, a 1, and so on [11]. 
 

 
Figure 4: Hybrid Quantum Neural Network Architecture. 

 
The example shown is relevant to the MNIST dataset. This is a 
well-defined, solved dataset that is excellent for benchmarking 
neural network efficacy. Two separate architectures were investi-
gated when implementing this hybrid model to operate on. As 
quantum computing is still early in its capabilities, and being lim-
ited to a small number of qubits, the hybrid approach is necessary 
to perform this low-resolution machine learning [12][13]. 
 
 
A. Two-class Selection from MNIST 
Initial designs revolve around training the hybrid model with a se-
lection of two classes, or characters, from the MNIST dataset. This 
began using handwritten samples of 0 and 1 for training and testing 
and evolved to compare each pairing of characters. Training the 
model with only two classes simplified the quantum layers of the 
neural network, only requiring two qubits for operation. The effi-
cacy of this approach is demonstrated in Table (). For the sake of 
brevity only classes 0 and 1-9 are presented. Code was modular-
ized to ease development and testing of this system, where data 
loading and preprocessing, as well as training and testing were sep-
arated into discrete packages. This allowed for a looping approach 
to process each pairing of two handwritten digits for model training 
and testing as well as minimized the complexity of the program. 
 
Table 1: Results from two-class loop design. 

Class Selection (Digits) Accuracy (%) 
0 and 1 52.8 
0 and 2 61.1 
0 and 3 63.9 
0 and 4 68.9 
0 and 5 63.9 
0 and 6 65.0 
0 and 7 62.2 
0 and 8 72.2 
0 and 9 76.1 

 
 

B. Full Ten-class MNIST 
Final goal of the project was to develop a hybrid QNN that would 
be capable of operation on multi-class datasets, and in this specific 
case on the ten class MNIST dataset for benchmarking and devel-
opment. Implementation of the full dataset led to significant chal-
lenges, as the number of classes would generally require more 
complex quantum layers with higher qubit counts. Several tests 
were conducted on model training efficacy while varying the num-
ber of qubits. Two, three and four qubit systems were tested, with 
results in Figure 5, with no other alterations performed on the test 
or model elements. 
 

 
Figure 5: Time cost for increasing number of qubits. 

 
These tests demonstrate that using the same underlying architecture 
methodology, increasing the number of qubits adds runtime dura-
tion. This is most likely an artifact of the simulation process, as the 
advantage of having more qubits in an actual quantum system 
would be fewer operations through more parallelization and overall 
higher resolution and performance. More on the simulation process 
in the next section. The resolution improvements should cross over 
into the realm of simulation, but results were inconclusive for the 
design thus far.  

III. SIMULATIONS 

Quantum computer hardware is not easily accessible or readily 
available, for this reason algorithm development occurs primarily 
on quantum computer simulators. These simulators operate on clas-
sical computers, where the possible quantum states and errors are 
built prior to the program runtime, which will generate an environ-
ment that works similarly to that of a quantum computer. The 
drawback of simulations is that the program runtime is considera-
bly longer than would be in a real quantum computer architecture. 
 
There are several varieties available within the qiskit software de-
velopment kit, but focus is placed on qasm and statevector. Qasm 
executes quantum circuits that simulate noise and measurement er-
rors within the entangled qubits. This creates the environment that 
more closely resembles actual quantum hardware. Statevector sim-
ulates a more idealized environment for the circuit, eliminating 
measurement errors allowing for focus to be placed on validating 
algorithms. 
 
Statevector is a preferred environment to develop and evaluate al-
gorithms, and as such is the starting point. As shown in Figure 6, 
the cost reduction exhibits the behavior desired from a neural net-
work training process with the elbow-shape curve in the statevector 
sim, whereas the qasm simulation in Figure 7 is a less refined out-
come. 
 



 
Figure 6: Statevector training cost reduction. 

 

 
Figure 7: Qasm training cost reduction. 

 

What this will introduce with the qasm sim is more randomness in 
results. With only two MNIST classes this isn’t as readily apparent, 
accuracy is for all intents and purposes identical between the two 
simulators, but as the number of classes and number of qubits in-
creases, the complexity of the system results in more noise that 
crosses over into runtime efficiency and accuracy. 

IV. CONCLUSIONS AND FUTURE WORK 

Predominant takeaway from this project has been that the technical 
readiness level of machine learning applied to quantum computing 
is still in its early stages. There is inherent randomness in the quan-
tum component of the models, in addition to the increased runtime 
duration seen from simulating quantum systems on classical hard-
ware. This is expected to improve as the technology matures, and 
new algorithm implementations are developed in the quantum side. 
 
Another deliverable for the project comes from performance im-
provements for photovoltaic fault detection using quantum ma-
chine learning. The QNN architecture developed significantly re-
duced machine learning model training time, leading to some opti-
mizations in a related project and co-authorship of a research paper 
[14]. 
 

 
Figure 8: Concept architecture for quantum computer program 

toolboxes. 
 
Future work on this design will be expanded upon in undergraduate 
research programs moving forward. A direct run-on for this project 
is going towards developing machine learning, computer vision 
and image processing techniques applied to quantum computing 
systems. The emphasis will be on creating reusable modules, or 
toolboxes, that act as a black box solution and can speed up the de-
velopment and testing of quantum algorithms, through abstracting 
away much of the complexity of the system. Secondary goal is to 
investigate capabilities and cross-over areas where quantum ad-
vantages can be leveraged in the advancement of machine learning 
applications and beyond [15]. 
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