
Multi-Camera 3D Mapping with Object Detection, 

Similarity Matching and Depth Estimation 
Emilio Montoya [1] [2], David Ramirez [2], Dr. Andreas Spanias [2] 

Cochise College [1], SenSIP Center [2], Arizona State University [2] 

Abstract - The purpose of this research is to develop a room 

mapping and an animal and human tracking algorithm. We will 

use a 360-degree camera to get a broad point of view (POV). Then 

a simulated robotic agent will move throughout the room to show 

a different POV where the 360-degree camera cannot see. With 

our two cameras we can run deep learning object detection to 

locate animals and humans. We then use ORB points for feature 

matching across the two cameras. By using two POVs, we can 

build a 3-D model of the room using Simultaneous Location and 

Mapping (SLAM). This 3D model will be analyzed for changes 

over time comparing the actual room before and after. This room 

mapping will increase the awareness of the environment. 

Index Terms: SLAM, Structure from Motion, Deep Learning, Object 

Detection, SSD, MobileNet, ORB, GMS, Omni-Directional Camera, 

DenseDepth, Midas 

I. Introduction 

The cat is up to trouble! Animals alter the environment in 

which they live. During the Covid-19 pandemic, there was a 

considerable increase in animal adoption from animal shelter 

facilities. Pets are living beings that require proper care and 

attention. However, some pets require more attention than 

others. Unfortunately, owners cannot always be around for their 

pets, it can be difficult to keep track of the activities their pets 

do throughout the day. Monitoring animal activity and behavior 

can help prevent accidents.  

We want to implement a fusion of both pet tracking and 

room mapping. The purpose is to be able to track what the pet 

has done and where it has been. Even though there are GPS 

trackers for pets in the market, they do not work accurately 

indoors or at small scale. Nor does GPS have the ability to track 

what pets have done while they are on their own wandering 

around the house. Our system will be capable of combining 

images from the actual room to form a 3D model. This model 

will be generated by using a stationary camera and a simulated 

robotic agent that will provide more information to compare 

along with a different point of view (POV). Over time different 

views can provide contrast to show changes to the environment 

over time. 

II. Related Work 

Over the years, object detection has attracted the attention 

from many scholars. Y. Zou et al [1] found that Single Shot 

Detector (SSD) with MobileNet V2 classifier is faster to other 

convolutional neural networks (CNN) modules, such as the 

Faster Region-CNN (R-CNN) with Inception V2 classifier. 

Even though Faster R-CNN with Inception V2 was better at 

detecting test image examples, the SSD MobileNet V2 can 

identify and detect objects faster which is ideal for real time 

detection and recognition. 

For real time detection on live video sources, methods vary 

from an input image, because with video the feature vector can 

be generated by the use of temporal information of the adjacent 

frame images. The application of real time detection has 

captivated the attention of various researchers. In one example 

F. Zhang developed a face expression recognition [2]. As a 

result, over the last decade multiple facial expression 

recognition programs were developed with a high recognition 

precision.  

In addition, the Grid-based Motion Statistics (GMS) [3] 

algorithm enables us to be able to see and determine similarities 

between images. Feature matching is the most basic type of 

input for many computers vison programs. According to J. 

Bian, this technique “it encapsulates motion smoothness as the 

statistical likelihood of a certain number of matches in a 

region.” [3]  

III. Approach 

The goal is to run one frame at a time from two live video 

sources through our detection and mapping system. We use 

Single Shot Detector (SSD) for the object detection, and 

MobileNet for classification. To avoid the costs of training a 

convolutional neural network (CNN), we will be using a pre- 

trained TensorFlow module. Additionally, we will use Midas 

Depth Estimation [4] neural network to determine how far away 

the object is from the cameras POVs. Also, we run a feature 

point matching algorithm to determine the similarity across 

both POVs, and by doing that the computer will be able to know 

 
Figure 1 Simple representation of steps to take. 



if the objects are the same or not. Finally, combine all SSD 

MobileNet, Midas depth estimation, and feature matching to 

determine the location of an object based on stationary camera 

and robotic agent location. From this work we expect to be able 

to generate a 3D model mapping a room. 

For our purposes and resources, we will be using a cat to 

be the object to track in the room. We will also use a 360-degree 

camera as the main camera to gather images from the room. The 

object detection algorithm will be able to follow the cat’s 

movements around the room. With [5], we will implement an 

object detection CNN to detect and identify objects, in our case 

cats and humans. 

Even though the 360-degree camera will give a wide image 

of the whole room, it will have some blind-spots in which the 

cat might hide. To account for this, we will introduce a 

simulated robotic agent into the room. As a result, this will give 

another POV of the room, which will also provide more 

information on the blind-spots that the main camera might 

encounter. Since we will be using a simulated robotic agent in 

an in-door environment, a SLAM algorithm [6] [7] will be used 

to map the room and also give a precise location of the 

whereabouts of the simulated robotic agent as shown below. 

 

Figure 2. A 3D reconstruction of the room is generated from 2D camera 

imagery [8]. 

We began with Object Detection. This is a critical part that 

would likely take the longest to set up and is also crucial for the 

overall project. This was chosen as the first step towards 

competition of the project. At the beginning of this step, we had 

two options: train a CNN on object detection or use an already 

trained object detection CNN. The first option was great 

because, we get to train it only on the objects we are interested 

in. However, it is also time consuming, and it requires a 

considerable amount of training images and a test to check its 

overall performance. On the other hand, the second option 

would not require any training whatsoever. The downside of 

this option is the object detection CNN is trained in a more 

generalized manner an alternate application. By taking into 

consideration what was mentioned above, we choose option 

number two.  

We started to research TensorFlow object detection modules. 

We found a whole list of modules that included CenterNet [9] 

HourGlass [10], SSD [11] MobileNet v2 [12], Faster R-CNN 

[13], SSD [11] ResNet [14], and EfficientDet [15]. It is worth 

noting that, in this list of modules includes variations of the 

CNNs mentioned above with different version types and image 

resolution inputs. We then tested various modules of each type 

to determine which module would be ideal for a real-time object 

detection task. The speed performance results of the modules 

will be introduced on the result portion of the paper.  

While we were using an object detection CNN from 

TensorFlow, it seems that there were some updates to the 

website. Unfortunately, these updates led to an error in the code 

because it could not find the specified module to download. 

Then we tried to run the code with other object detection 

modules, but the required input types were different from the 

previous module. Consequently, we had to re-define functions 

and adjust some of our code. Also, since we were downloading 

the object detection model every time we used it, there were 

some complications in which the computer could not locate the 

file for the module. We solved it by downloading the module 

and placing the file in the work directory. TensorFlow updates 

hyperlinks and application programming interfaces (API) 

without regard for past software releases. This causes a lot of 

headaches for thousands of people. 

After the object detection algorithm was complete, we 

moved onto feature point matching. Feature point matching is 

the basic input of many computer vision algorithms. For this 

specific part we ran GMS [3]. This type of algorithm looks for 

similarities across images by focusing onto specific key points, 

ORB points [16], and its neighboring points. Then it looks at 

the other images looking for the ORB point at work to 

determine a true match or a false match. The purpose for this 

algorithm on this project is so that the computer will be able to 

determine if the objects across the multiple perspectives are the 

same or not. 

Afterwards, we implement a depth estimation algorithm. 

This is required to determine the distance of the objects in the 

room from the perspective of the different cameras. For this we 

will be using a depth generator network for monocular depth 

estimation. This is mainly to estimate the distance of the 

multiple objects on the room, from the objects to the main 

camera or the simulated robotic agent. Moreover, this is a great 

addition to room mapping because with this tool now we can 

perceive where the different objects on a room are, not only the 

simulated robotic agent using a SLAM algorithm.  

 

IV. Results 



To run this experiment, we used an Ultrabook laptop with 

an Intel Core i7 8th Gen CPU @ 2.00 GHz, 16.00 Gigabytes of 

RAM. For the main camera we used a 360-degree Garmin 

VIRB Camera, and for the simulated robotic agent we used the 

Razer Kiyo Webcam. Moreover, to run all of the various 

software modules of this project, we created various virtual 

environments on Anaconda3 [17] for each specific feature. We 

also had to get Jupyter [17] notebook to run all the different 

codes involved. At the end, when all the features were running 

properly, we combined all the codes into one single application 

in which all features ran together at the same time.  

A. Object Detection 

From our findings on Table 1 and Chart 1, we learned that 

the best module for real time object detection was the SSD 

MobileNet v2 running at 0.1129 seconds. The next best option 

was the EfficientDet D0 512x512 running slower by 0.7 

seconds. However, it was also more precise on its detections. It 

appears that there is a tradeoff between speed and accuracy 

when it comes to object detection modules. The faster the neural 

network runs, its precision is generally lower and vice versa.  

 

Chart 1. Comparison of CNN TensorFlow modules performing object 

detection from images. 

 

Table 1. Average frame per second of TensorFlow modules performing object 

detection from two different live video source. 

Also, as shown on Figure 3 we found that background on 

images also affect the performance of the modules at detecting 

objects.  

 

Figure 3. A black cat being detected and identified SSD MobileNet V2 (image 

on the left). With same color on background the black cat was not 

detected (image on the right). 

B. Feature Matching 

We could successfully implement GMS feature point 

matching across live video with an average time per frame of 

0.3378 seconds. In Figure 4, we can see the different ORB 

points matches across different POVs 

 

Figure 4. GMS feature point similarity matching (yellow lines) 

C. Midas Depth Estimation 

We were able to successfully run Midas depth estimator 

across live videos from the multiple cameras. The output image 

given by the neural network is in a grey-scale format. As shown 

in Figure 5, the objects closest to the camera are white and the 

objects further away are black. 



 

Figure 5. Midas depth estimator depth map output generated by RGB input data 

from multiple cameras 

This algorithm was able estimate depth on video with an 

average of 0.8561 seconds per frame.  

D. DenseDepth 

DenseDepth [18] was a last-minute addition to the project 

with the purpose of generating a 3D model based on depth 

estimation. It is important to mention that this algorithm takes 

about 3.2 seconds to run per frame. However, it can be used to 

create a 3D model of a specific frame in particular as shown in 

Figure 6.  

 

Figure 6. Depth map output (image on the left) combined with the RGB input 

image to generate a 3D moveable model (image on the right). 

Findings 

When we were combining the different algorithms to run 

at the same time, we found some interesting interactions with 

neural networks. On Table 2, we estimated a time when 

combining all algorithms. However, when we used the SSD 

MobileNet v2 combination, we ran it faster with an average of 

0.8236 seconds per frame. On the other hand, the SSD 

MobileNet v1 combination ran slower with an average time of 

3.8265 seconds. 

  

Table 2. Expected time when combining SSD MobileNet v1 [19] FPN [20] 

and SSD MobileNet v2 different modules and running them at the 

same time  

Acknowledgment  
This project was funded in part by the NSF CISE award number 1659871. 

References 

[1] Y. Zou, et al, “Ship target detection and identification based on 

SSD_MobileNetV2,” 2020 IEEE 5th Information Technology and 

Mechatronics Engineering Conference (ITOEC), 2020, pp. 1676 – 80, doi: 

10.1109/ITOEC49072.2020.9141734. 

[2] F. Zhang, et al, “An Expression Recognition Methods on Robots Based on 

Mobilenet V2-SSD,” 2019 6th International Conference on Systems and 

Informatics (ICSAI), 2019, pp. 118-22, doi: 

10.1109/ICSAI48974.2019.9010173. 

[3] J. Bian, W. Lin, Y. Matsushita, S. Yeung, T. Nguyen and M. Cheng, "GMS: 

Grid-Based Motion Statistics for Fast, Ultra-Robust Feature Correspondence," 

2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 

2017, pp. 2828-2837, doi: 10.1109/CVPR.2017.302. 

[4] Ranftl, Rene, et al. “Towards Robust Monocular Depth Estimation: Mixing 

Datasets for Zero-shot Cross-dataset Transfer.” arXiv preprint arXiv: 

1907.01341.2019. 

[5] F. Chollet, “Basic Classification: Classify Images of Clothing : TensorFlow 

Core,” TensorFlow, 2017, www.tensorflow.org/tutorials/keras/classification. 

[6] Y. Latif, “SLAM in the Era of Deep Learning,” Medium, Towards Data 

Science, 17 Nov. 2019, www.towardsdatascience.com/slam-in-the-era-of-

deep-learning-e8a15e0d16f3. 

[7] R Mur-Artal, JD Tardós. ORB-SLAM2: An Open-Source SLAM System 

for Monocular, Stereo, and RGB-D Cameras. IEEE Transactions on Robotics, 

2017. 

[8] J. F. Henriques, “Mapping Environments with Deep Networks - Visual 

Geometry Group Blog.” Information Engineering Main/Home Page, 2018, 

www.robots.ox.ac.uk/~vgg/blog/mapping-environments-with-deep-

networks.html. 

[9] Duan, Kaiwen, et al. “Centernet: Keypoint Triplets for Object Detection.” 

Proceedings of IEEE/CVF Intenational Conference on Computer Vision. 2019. 

[10] Melekhov, Iaoroslav, et al. “Image-based Localization Using Hourglass 

Networks.” Proceedings of the IEEE International Conference on Computer 

Vision Workshops. 2017. 

[11] Liu, Wei, et al. “SSD: Single Shot Multibox Detector.” European 

Conference on Computer Science Vision. 2016. 

[12] Sandler, Mark, et al. “Mobilenetv2: Inverted Residuals and Linear 

Bottlenecks.” Proceedings of the IEEE Conference on Computer Vision and 

Pattern Recognition. 2018.  

[13] Ren, Shaoqing, et al. “Faster R-CNN: Towards Real-Time Object 

Detection with Region Proposal Networks.” Advances in Neural Information 

Processing Systems 28. 2015. 

[14] He, Kaiming, et al. “Deep Residual Learning for Image Recognition.” 

Proceedings of the IEEE Conference on Computer Vision and Pattern 

Recognition. 2016 

[15] Tan, Mingxing, Rouming Pang, and Quoc V. Le. “Efficientdet: Scalable 

and Efficient Object Detection.” Proceedings of the IEEE/CVF Conference on 

Computer Vision and Pattern Recognition. 2020. 

[16] Rublee, Ethan, et al. “ORB: An Efficient Alternative to SIFT and SURF.” 

The IEEE International Conference on Computer Vision. 2011. 

[17] E. Nxumalo and K. O. Awodele, "A Review on the Use of 

Recommendation and Value Estimation Systems to Determine Protection 

Based Distributed Generation Penetration Limits," 2020 International 

SAUPEC/RobMech/PRASA Conference, 2020, pp. 1-6, doi: 

10.1109/SAUPEC/RobMech/PRASA48453.2020.9041048. 

[18] Alhashim, Ibraheem, and Peter Wonka. "High Quality Monocular Depth 

Estimation via Transfer Learning." arXiv preprint arXiv:1812.11941. 2018. 

[19] Howard, Andrew G., et al. "Mobilenets: Efficient Convolutional Neural 

Networks for Mobile Vision Applications." arXiv preprint arXiv:1704.04861 

(2017). 

[20] Lin, Tsung-Yi, et al. "Feature Pyramid Networks for Object Detection." 

Proceedings of the IEEE Conference on Computer Vision and Pattern 

Recognition. 2017. 


