
RET Site sponsored by NSF Award 1953745

Profiling of Quantum Computers and Simulators

Filippo Posta

Mathematics Division

Estrella Mountain Community College

Avondale, USA

filippo.posta@estrellmountain.edu

Professor Andreas Spanias

SenSIP Center

Arizona State University

Tempe, AZ, USA

spanias@asu.edu

Glen Uehara

SenSIP Center

Arizona State University

Tempe, AZ, USA

guehara@asu.edu

Abstract— Quantum Computers (QC) are a reality and

evolving to fulfill their promise of revolutionizing the field of

computer science. Algorithms and protocols are being

developed to prepare for the day when Quantum Computers

will be reliable enough to perform the calculations they are

designed for. Shor’s algorithm is one of these calculations and

it requires the computation of Fast Fourier Transforms that

may take many years on a classical computer. This work uses

Quantum Fourier Transform programs to profile available

Quantum Computers and simulators in an effort provide a

snapshot of the current capabilities of QC.

Keywords—quantum computers, system profiling, Braket,

Qiskit, FFT

I. PROJECT DESCRIPTION

Quantum Computers (QC) are a developing
computational platform based on the principles of quantum
physics. Their fundamental units are called Qubits. A Qubit
can be on sate 0, or 1, or a linear combination of the two.
This property is called superposition and provides a
superficial reason of why QCs represent the next step in the
evolution of computers [1]. The QC architecture has been
constantly developed since the first (2 Qubit) quantum
computer was built in 1998 and many companies have
created QCs and made them available to the public via cloud
systems [2,3]. In addition to QCs, many tech companies have
developed QC environment simulators (QS) to provide
programmers with the tools to explore the computational
possibilities of QC’s on classical computers [2]. The variety
of cloud-based and simulator-based QC environments has
created the need to profile them so that users can make
educated decision of what system to use for their needs.

We aim to profile a few of the publicly available QC and
QS and to do so we decided to use the Quantum Fourier
Transform (QFT) and its inverse (IQFT) [4]. This choice is
rooted on two factors. QCs are supposed to revolutionize
cryptography by rendering the RSA Algorithm obsolete
through the quick implementation of the Shor’s Algorithm
[5]. This quick implementation is currently unfeasible in
classical computers and the bottleneck consists of the period
finding step of Shor’s algorithm which involves calculating
Fourier transforms (FTs). The other fact is the authors’
interest in machine learning and signal processing two fields
that have widespread use of Fourier transforms [6].

II. METHODS

Quantum Computers are a developing computational
platform based on the principles of quantum physics. Their
fundamental units are called Qubits. A Qubit can be on sate
0, or 1, or a linear combination of the two. The way that
Quantum Programming (QP) works is to use a classical
computer to prepare data, then feed the data to a quantum
circuit and finally process the result on the classical
computer. Most computational environments use Python for
the classical computing steps, but quantum circuits are
created differently. Figure 1 shows a QFT circuit for the
Qiskit platform by IBM [7].

To benchmark different platforms, we choose a scenario
that provided an intuitive signal as well as its FT. We choose
as signal that alternates a non-zero number and zero (see
Figure 1). Such signal will result in an FFT with two non-
zero values at the initial and half-way position. Figures 2 and
3 represent the forward and inverse QFT circuits for such
scenarios.

Figure 1: Signaling scenario for our analysis.

In Figure 2, the first “column” (i.e., I,H,H) represents the
gates necessary to organize the qubits into the input signal
for our scenario. Then, through a series of Z and Hadamard
gates and a final swap between qubit 1 and 3, we arrive to
the Fourier Transformed representation of the initial input.
At this point we measure the state of the qubits in the circuit
for data collection and analysis.

To study the accuracy of the IQFT we created the circuit
depicted in Figure 3. The first two “columns” in the circuit
are used to set up the configuration of the qubits to match the
output of the QFT circuit. This step was only necessary to
study IQFT in isolation from QFT since once we measure the
qubits in the QFT circuit, those qubits cannot be used
anymore as input of the IQFT.

Figure 2: 3 QFT circuit for our sample problem. From
left to right, the qubits are set-up to represent the input signal
(1,0,1,0,1,0) and then a series of rotations leads to the Fourier

Transform representation of the input signal. At that point
the circuit is measured.

Conversely, when studying the serial computation of
QFT and IQFT, we did not need to measure the qubits at the
end of the QFT circuit, but instead we created one circuit that
included QFT and IQFT with the absence of the
measurement at the end of Figure 2 and the set-up gates
(pinkish and purple gates) on the left of Figure 3.

Figure 3: 3 Qubits inverse QFT circuit. From left to
right, the qubits are set-up to represent the QFT of the

original input and a sequence of gates is used to transform
back to the original input. At which point the state of the

qubits is measured.

We implemented the circuits using the IBM platform
Qiskit [7], the Amazon platform Braket [8]. For the Qiskit
study we used the cloud computing platform to run our codes
on the Simulator and the Lima Quantum Computer. The
choice of the Lima QC is due to its availability at the time we
ran our first experiments. Afterwards, we used the same
machine to maintain consistencies (different machines can
have different error patterns due to qubits instabilities).
Similarly, we used the Braket simulator as well as the Rigetti
quantum machine.

We run each code from 2 to 5 Qubits configurations for
each machine. 5 Qubits was the maximum allowed for the
Lima machine. Each simulation consisted of 1,000 shots. A
common amount to capture the error patterns of the machine
without using too much computational time.

We used standard univariate methods to report and
analyze the error. The next section shows our results.

III. RESULTS

Our first analysis aimed to confirm that the precision of a
QC decreases as the number of Qubits increases. This is a
well-known current limitation of QCs that is due to
individual Qubits instability as well as entanglement among
Qubits. We run the QFT, IQFT and the I-QFT codes on both
IBM-Lima and Rigetti QCs and confirmed that precision
decreases as the number of Qubit increases. The results for
the QFT code run IBM-Lima are shown in Figure 4. In this
case precision is intended as the percentage of correct shots.
Our results show that QC are viable up to 4 Qubits since we
can take the most common outcome from the 1,000 shots as
the correct answer. At 5 Qubits the calculation becomes so
noisy that the correct calculation can be different from the
most occurring one.

Figure 4: Precision behavior as function of number of
Qubits for the QFT code run in IBM-Lima QC.

Our next analysis focused on the comparison between
simulators and actual Quantum machines (QPU) and its
results for the Qiskit platform are shown in Figure 5. The

results show a clear separation between the simulator and the
actual QPU (IBM-Lima). This separation is consistent for all
of our three sample codes and similar results were observed
in the Braket study. We should not that for this analysis we
used the Sum of Squared Error as a measure of
computational performance. As a result, there is an
increasing trend with the number of Qubits rather than the
decreasing trend observed in Figure 4. The results are
consistent since the increasing trend in Figure 5 shows an
increase in error as the number of Qubits increases.

The difference in precision between the two machines is
due to decoherence that is not observed, and it is hard to
account for in the simulators. Decoherence manifests as
Qubits states instabilities and it is due to environmental
factors that are hard to predict and quantity. For example,
small changes in electromagnetic fields surrounding the QC
could be the source of these instabilities. Because this
process is very complicated and not well understood, it
becomes impossible to represent it within the simulators [9].

Figure 5: Performance analysis on Qiskit comparing
simulator and QPU as function of Qubits. Performance is
measured using the sum of squared error, thus the increasing
trends.

The results that were observed for the IBM simulator
were also observed in the Braket simulator. A comparison is
shown in Figure 6, and it includes an interesting
improvement in accuracy for the forward QFT when
compared with the inverse and the composition. This could
be due to the initial Qubit configuration of the QFT circuit in
Braket that requires the use of less gates than the other codes
and implementations.

Figure 6: simulation for Braket and Qiskit are similar
except for FFT.

Our last analysis compared two QPUs performance on
the QFT codes for various Qubits configuration. The results
are shown in Figure 7. The error’s trendline shows a slightly
better stability by the Lima machine for lower number of

Qubits, but this advantage disappears as the number of
Qubits increases. For practical purposes the machines
perform the same since the most-likely outcome for the
machine is the same for all Qubits configurations.

Figure 7: Performance analysis of QPUs for the QFT
code. IBM_Lima was accessed using Qiskit and the Rigetti
Aspen 9 QPU was accessed using Braket cloud services.

IV. CONCLUSIONS

From our analysis we observe that the decrease in
precision as the number of Qubits increases is still a common
issue. Additionally, the decrease monotonic in the machines
that have been able to test. That is a very troublesome issue
that highlights the architectural instability of QPUs. A better
performance pattern would be characterized by a flat
precision curve for low Qubits followed by a decrease, such
a patter would imply an ability to stabilize entanglement and
decoherence issues.

Decoherence is also the main differentiator between
simulators and QPUs. This leads to overly optimistic (in
terms of precision) results that do not translate to actual
QPUs. However, the use and development of simulators is of
the utmost importance since they provide a platform to test
circuits quickly and inexpensively, before they are run on the
QPUs.

We did not observe any major differences between the
IBM and Amazon simulators and the Lima and Rigetti QPUs
in terms of performance. At the same time, we created our
codes to the specifications of each machine. A better practice
could involve the use of TKET [11], a platform that is aimed

at taking a circuit and optimize it for various Quantum
computing platforms, including Qiskit and Braket. This
approach could make the profiling more robust and portable
to other platforms.

Computer profiling is an important element of quantum
computing. Quantum machines are constantly evolving and
periodical checks on the hardware will help their
development and performance.

V. AKNOWLEDGEMENTS

This work was supported by NSF Award 1953745 and
the SENSIP center at ASU.

REFERENCES

[1] Resch, Salonik, and Ulya R. Karpuzcu. "Quantum computing: An
overview across the system stack." arXiv preprint
arXiv:1905.07240 (2019).

[2] J. Hidary, Quantum Computing: An Applied Approach. Champ:
Springer, 2019.

[3] Devitt, Simon J. "Performing quantum computing experiments in the
cloud." Physical Review A 94.3 (2016): 032329.

[4] Weinstein, Yaakov S., et al. "Implementation of the quantum Fourier
transform." Physical review letters 86.9 (2001): 1889.

[5] Terhal, Barbara M. "Quantum supremacy, here we come." Nature
Physics 14.6 (2018):530-531.

[6] P. Wittek. Quantum Machine Learning: What Quantum Computing
Means to Data Mining. Academic Press, 2014.

[7] Qiskit Development Team “Learn quantum Computing Using Qiskit”.
URL: https://qiskit.org/textbook/preface.html (last accessed July,
2021).

[8] Amazon Braket. URL: https://aws.amazon.com/blogs/aws/amazon-
braket-get-started-with-quantum-computing/ (last accessed July,
2021).

[9] Rigetti Quantum Computers. URL
https://aws.amazon.com/braket/hardware-providers/rigetti/ (last
accessed July 2021).

[10] Grurl, Thomas, Jürgen Fuß, and Robert Wille. "Considering
decoherence errors in the simulation of quantum circuits using
decision diagrams." In Proceedings of the 39th International
Conference on Computer-Aided Design, pp. 1-7. 2020.

[11] TKET. URL https://cambridgequantum.com/tket/ (last accessed July
2021)

https://qiskit.org/textbook/preface.html
https://qiskit.org/textbook/preface.html
https://qiskit.org/textbook/preface.html
https://aws.amazon.com/braket/hardware-providers/rigetti/
https://cambridgequantum.com/tket/

