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Abstract— Quantum Computers (QC) are a reality and 

evolving to fulfill their promise of revolutionizing the field of 

computer science. Algorithms and protocols are being 

developed to prepare for the day when Quantum Computers 

will be reliable enough to perform the calculations they are 

designed for. Shor’s algorithm is one of these calculations and 

it requires the computation of Fast Fourier Transforms that 

may take many years on a classical computer. This work uses 

Quantum Fourier Transform programs to profile available 

Quantum Computers and simulators in an effort provide a 

snapshot of the current capabilities of QC. 
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I. PROJECT DESCRIPTION 

Quantum Computers (QC) are a developing 
computational platform based on the principles of quantum 
physics. Their fundamental units are called Qubits. A Qubit 
can be on sate 0, or 1, or a linear combination of the two. 
This property is called superposition and provides a 
superficial reason of why QCs represent the next step in the 
evolution of computers [1]. The QC architecture has been 
constantly developed since the first (2 Qubit) quantum 
computer was built in 1998 and many companies have 
created QCs and made them available to the public via cloud 
systems [2,3]. In addition to QCs, many tech companies have 
developed QC environment simulators (QS) to provide 
programmers with the tools to explore the computational 
possibilities of QC’s on classical computers [2]. The variety 
of cloud-based and simulator-based QC environments has 
created the need to profile them so that users can make 
educated decision of what system to use for their needs. 

We aim to profile a few of the publicly available QC and 
QS and to do so we decided to use the Quantum Fourier 
Transform (QFT) and its inverse (IQFT) [4]. This choice is 
rooted on two factors. QCs are supposed to revolutionize 
cryptography by rendering the RSA Algorithm obsolete 
through the quick implementation of the Shor’s Algorithm 
[5]. This quick implementation is currently unfeasible in 
classical computers and the bottleneck consists of the period 
finding step of Shor’s algorithm which involves calculating 
Fourier transforms (FTs). The other fact is the authors’ 
interest in machine learning and signal processing two fields 
that have widespread use of Fourier transforms [6]. 

II. METHODS 

Quantum Computers are a developing computational 
platform based on the principles of quantum physics. Their 
fundamental units are called Qubits. A Qubit can be on sate 
0, or 1, or a linear combination of the two. The way that 
Quantum Programming (QP) works is to use a classical 
computer to prepare data, then feed the data to a quantum 
circuit and finally process the result on the classical 
computer. Most computational environments use Python for 
the classical computing steps, but quantum circuits are 
created differently. Figure 1 shows a QFT circuit for the 
Qiskit platform by IBM [7].   

To benchmark different platforms, we choose a scenario 
that provided an intuitive signal as well as its FT. We choose 
as signal that alternates a non-zero number and zero (see 
Figure 1). Such signal will result in an FFT with two non-
zero values at the initial and half-way position. Figures 2 and 
3 represent the forward and inverse QFT circuits for such 
scenarios.  

 

 

Figure 1: Signaling scenario for our analysis.  

 

In Figure 2, the first “column” (i.e., I,H,H) represents the 
gates necessary to organize the qubits into the input signal 
for our scenario. Then, through a series of Z and Hadamard 
gates and a final swap between qubit 1 and 3, we arrive to 
the Fourier Transformed representation of the initial input. 
At this point we measure the state of the qubits in the circuit 
for data collection and analysis. 

To study the accuracy of the IQFT we created the circuit 
depicted in Figure 3. The first two “columns” in the circuit 
are used to set up the configuration of the qubits to match the 
output of the QFT circuit. This step was only necessary to 
study IQFT in isolation from QFT since once we measure the 
qubits in the QFT circuit, those qubits cannot be used 
anymore as input of the IQFT. 

 

 

Figure 2: 3 QFT circuit for our sample problem. From 
left to right, the qubits are set-up to represent the input signal 
(1,0,1,0,1,0) and then a series of rotations leads to the Fourier 

Transform representation of the input signal. At that point 
the circuit is measured.  

Conversely, when studying the serial computation of 
QFT and IQFT, we did not need to measure the qubits at the 
end of the QFT circuit, but instead we created one circuit that 
included QFT and IQFT with the absence of the 
measurement at the end of Figure 2 and the set-up gates 
(pinkish and purple gates) on the left of Figure 3.  



 

Figure 3: 3 Qubits inverse QFT circuit. From left to 
right, the qubits are set-up to represent the QFT of the 

original input and a sequence of gates is used to transform 
back to the original input. At which point the state of the 

qubits is measured. 

 

We implemented the circuits using the IBM platform 
Qiskit [7], the Amazon platform Braket [8]. For the Qiskit 
study we used the cloud computing platform to run our codes 
on the Simulator and the Lima Quantum Computer. The 
choice of the Lima QC is due to its availability at the time we 
ran our first experiments. Afterwards, we used the same 
machine to maintain consistencies (different machines can 
have different error patterns due to qubits instabilities). 
Similarly, we used the Braket simulator as well as the Rigetti 
quantum machine. 

We run each code from 2 to 5 Qubits configurations for 
each machine. 5 Qubits was the maximum allowed for the 
Lima machine. Each simulation consisted of 1,000 shots. A 
common amount to capture the error patterns of the machine 
without using too much computational time. 

We used standard univariate methods to report and 
analyze the error. The next section shows our results. 

III. RESULTS 

Our first analysis aimed to confirm that the precision of a 
QC decreases as the number of Qubits increases. This is a 
well-known current limitation of QCs that is due to 
individual Qubits instability as well as entanglement among 
Qubits. We run the QFT, IQFT and the I-QFT codes on both 
IBM-Lima and Rigetti QCs and confirmed that precision 
decreases as the number of Qubit increases. The results for 
the QFT code run IBM-Lima are shown in Figure 4. In this 
case precision is intended as the percentage of correct shots. 
Our results show that QC are viable up to 4 Qubits since we 
can take the most common outcome from the 1,000 shots as 
the correct answer. At 5 Qubits the calculation becomes so 
noisy that the correct calculation can be different from the 
most occurring one. 

 

Figure 4: Precision behavior as function of number of 
Qubits for the QFT code run in IBM-Lima QC. 

Our next analysis focused on the comparison between 
simulators and actual Quantum machines (QPU) and its 
results for the Qiskit platform are shown in Figure 5. The 

results show a clear separation between the simulator and the 
actual QPU (IBM-Lima). This separation is consistent for all 
of our three sample codes and similar results were observed 
in the Braket study. We should not that for this analysis we 
used the Sum of Squared Error as a measure of 
computational performance. As a result, there is an 
increasing trend with the number of Qubits rather than the 
decreasing trend observed in Figure 4. The results are 
consistent since the increasing trend in Figure 5 shows an 
increase in error as the number of Qubits increases. 

The difference in precision between the two machines is 
due to decoherence that is not observed, and it is hard to 
account for in the simulators. Decoherence manifests as 
Qubits states instabilities and it is due to environmental 
factors that are hard to predict and quantity. For example, 
small changes in electromagnetic fields surrounding the QC 
could be the source of these instabilities. Because this 
process is very complicated and not well understood, it 
becomes impossible to represent it within the simulators [9].  

 

Figure 5: Performance analysis on Qiskit comparing 
simulator and QPU as function of Qubits. Performance is 
measured using the sum of squared error, thus the increasing 
trends. 

The results that were observed for the IBM simulator 
were also observed in the Braket simulator. A comparison is 
shown in Figure 6, and it includes an interesting 
improvement in accuracy for the forward QFT when 
compared with the inverse and the composition. This could 
be due to the initial Qubit configuration of the QFT circuit in 
Braket that requires the use of less gates than the other codes 
and implementations. 

 

Figure 6: simulation for Braket and Qiskit are similar 
except for FFT. 

Our last analysis compared two QPUs performance on 
the QFT codes for various Qubits configuration. The results 
are shown in Figure 7. The error’s trendline shows a slightly 
better stability by the Lima machine for lower number of 

      

   

   

   

  

   

   

   

   

    

    

       

 
  
  
  
 
 

             

                                        

 

    

   

    

   

    

   

    

    

  
 
  
 
 
  
  
  
  
 
 

                

                                                    
                  

                                                    

       

      

     

    

   

 

    

  
 
  
  
  
 
 
 
 
 
  
 
 
 
 
  
  
 
 

                

                                

                                            



Qubits, but this advantage disappears as the number of 
Qubits increases. For practical purposes the machines 
perform the same since the most-likely outcome for the 
machine is the same for all Qubits configurations. 

 

Figure 7: Performance analysis of QPUs for the QFT 
code. IBM_Lima was accessed using Qiskit and the Rigetti 
Aspen 9 QPU was accessed using Braket cloud services. 

IV. CONCLUSIONS 

From our analysis we observe that the decrease in 
precision as the number of Qubits increases is still a common 
issue. Additionally, the decrease monotonic in the machines 
that have been able to test. That is a very troublesome issue 
that highlights the architectural instability of QPUs. A better 
performance pattern would be characterized by a flat 
precision curve for low Qubits followed by a decrease, such 
a patter would imply an ability to stabilize entanglement and 
decoherence issues. 

Decoherence is also the main differentiator between 
simulators and QPUs. This leads to overly optimistic (in 
terms of precision) results that do not translate to actual 
QPUs. However, the use and development of simulators is of 
the utmost importance since they provide a platform to test 
circuits quickly and inexpensively, before they are run on the 
QPUs.  

We did not observe any major differences between the 
IBM and Amazon simulators and the Lima and Rigetti QPUs 
in terms of performance. At the same time, we created our 
codes to the specifications of each machine. A better practice 
could involve the use of TKET [11], a platform that is aimed 

at taking a circuit and optimize it for various Quantum 
computing platforms, including Qiskit and Braket. This 
approach could make the profiling more robust and portable 
to other platforms. 

Computer profiling is an important element of quantum 
computing. Quantum machines are constantly evolving and 
periodical checks on the hardware will help their 
development and performance. 
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