

Thermal Characterization for COVID-19 Point of Care Testing Device

Michael Esposito¹, Jennifer Blain Christen^{2, 3}, Cliff Anderson³, Sunil Rao², Andreas Spanias² [1] SenSIP REU Student, SOLS [2] School of ECEE [3] BEST Lab, Arizona State University

MOTIVATION

Shortcomings of conventional saliva testing:

- Time consuming (24-48 hours)
- **Expensive lab equipment required**
- Thermal characterization and design [1] of point of care (PoC) reader is necessary:
 - **Ensure proper DNA amplification by loop-mediated** isothermal amplification (LAMP) [2]
 - Printed circuit board (PCB) component operation [3]

PROJECT AIM

- Obtain PoC device's thermal characteristics
- **Ensure proper heating of reaction wells**
- **Determine discrepancies in heating**
- **Optimize thermal design of reader**

THERMAL TESTING DESIGN

oster Template Designed by Genigraphics ©20 1.800.790.4001 www.genigraphics.com

Proportional, integral, derivative (PID) controller [4] tuning at the desired steady state temperature (65C in this case) reduced temperature oscillations when compared to tuning at other temperatures.

ACKNOWLEDGEMENTS

This project is supported by NSF Award 1659871 and **Arizona Department of Health Services award CTR051763 COVID-19 Point of Need Diagnostic Device.**

DISCREPANCY BETWEEN HEATER & WELL

OPTIMIZED PID TUNING

APPARATUS USED FOR THERMAL TESTING

CONCLUSION

- Thermal characterization and design necessary for accurate COVID-19 test results
- PoC device's thermal design can be optimized by calculating power dissipation, measuring temperature discrepancies, and altering internals of the reader

ONGOING & PLANNED WORK

- Run thermal tests using various microfluidic chips [5]
- Thermal testing for repeated cycles
- Redesign methods contact between chip and heat spreader
- **Retrieve** coefficients controller for embedded temperature control in reader

Sensor Signal and Information Processing Center https://sensip.asu.edu

Reader Thermometer PID Controller Voltage Source

thermal for

PID from

REFERENCES

[1] Bejan, A. (1982). Second-law analysis in heat transfer and thermal design. In Advances in heat transfer (Vol. 15, pp. 1-58). Elsevier.

[2] T. Notomi, Y. Mori, N. Tomita, and H. Kanda, "Loopmediated isothermal amplification (LAMP): principle, features, and future prospects. Journal of Microbiology, 2015.

[3] K. Zhang, A. Guliani, S. Ogrenci-Memik, G. Memik, K. Yoshii, R. Sankaran, and P. Beckman, "Machine Learning-**Based Temperature Prediction for Runtime Thermal** Management Across System Components," IEEE Transactions on Parallel and Distributed Systems, 2017.

[4] Shein, W. W., Tan, Y., & Lim, A. O. (2012, September). PID controller for temperature control with multiple actuators in cyber-physical home system. In 2012 15th International Conference on Network-Based Information Systems (pp. 423-428). IEEE.

[5] Ren, K., Zhou, J., & Wu, H. (2013). Materials for microfluidic chip fabrication. Accounts of chemical research, 46(11), 2396-2406.