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Motivation
What is Quantum Computing?

● Quantum mechanics applied to 

computation

Why use Quantum Computing?
● Capable of managing extremely large 

data sets

● Inherently parallelized

● Thousandfold computation speed 

increase potential

● Advantages cross over into ML 

applications

Legacy IBM Quantum Computer

What are the Challenges?
● Execution time is a large barrier

● Increasing precision in terms of 

qubits adds complexity to several 

factors
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Hybrid Quantum-Classical 
Neural Networks

● Uses PyTorch and 

Qiskit, connected via 

TorchConnector 

module

● Classical component 

can be graphics 

processor unit (GPU) 

accelerated (Torch 

CUDA)
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Quantum Hidden Layers
● Qubits perform 

gradient descent 

through rotations 

around a sphere

Bloch Sphere Representation 

of a qubit

https://algassert.com/quirk#circuit={%22cols%22:[[%22Counting2%22],[%22Chance%22,%22Chance%22],[{

%22id%22:%22Ryft%22,%22arg%22:%22pi%20t%22},{%22id%22:%22Ryft%22,%22arg%22:%22pi%20t%22}],

[%22%E2%80%A2%22,%22X%22],[{%22id%22:%22Ryft%22,%22arg%22:%22pi%20t%22},{%22id%22:%22Ryf

t%22,%22arg%22:%22pi%20t%22}]]}

Rotation gate operations on qubits

● Vector position 

represents state of 

the qubit (weights 

from training)

https://algassert.com/quirk#circuit=%7B%22cols%22:%5B%5B%22Counting2%22%5D,%5B%22Chance%22,%22Chance%22%5D,%5B%7B%22id%22:%22Ryft%22,%22arg%22:%22pi%20t%22%7D,%7B%22id%22:%22Ryft%22,%22arg%22:%22pi%20t%22%7D%5D,%5B%22%E2%80%A2%22,%22X%22%5D,%5B%7B%22id%22:%22Ryft%22,%22arg%22:%22pi%20t%22%7D,%7B%22id%22:%22Ryft%22,%22arg%22:%22pi%20t%22%7D%5D%5D%7D
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Quantum Simulators

Simulator Options in Qiskit:
● Qasm - simulates noisy backend system

● Statevector - provides the state vector of the circuit

● Unitary - provides unitary matrix of circuit

● Pulse - simulates pulse schedules to execute directly 

on hardware channels

Simulator: Qasm Statevector

Runtime (min): 14.38 10.44

Accuracy (%): 96-99 99.4

2 Qubit QNN, 7s vs 1s on MNIST Dataset - Cost Reduction

System Specifications:

PopOS 20.10

Ryzen 9 4900HS 

RTX 2060

Qasm Simulator Statevector Simulator
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Challenges

Accuracy
● Small number of qubits introduces 

resolution-related noise

● Experimentation suggests as qubit 

number increases, stability and reliability 

decrease

Time
● Most models require several hours to 

train

● Hybrid nature of QNNs make 

development difficult

● Have cut time down from ~12+ hours to 

around 45 minutes

Selection of test results from trained MNIST QNN model

Accuracy and training time for MNIST QNN model
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Effects of Higher Qubit Numbers

Future work
● Fixing issue with evaluation code

● Would like to try 5+ qubits and 

● Increasing qubits in a simulated 

environment increases runtime as 

expected

● Results in simulation vary, but overall 

pattern is consistent
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Quantum Circuit Complexity Reference

The quantum circuit:
● Provides abstracted representation of the quantum 

program logic

● Can increase number of qubits to increase resolution, 

comes at the cost of error (noise)

● Expected to be solved as technology matures

2 Qubit 

feature 

map

3 Qubit 

feature 

map
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Concluding Remarks

Next Steps
● Continue work through independent study in the 

Fall semester. Will entail:

○ Model improvements

○ Circuit improvements

○ Expansion of models to real-world 

datasets

○ Tool comparison in regard to complexity of 

design, execution time, user-friendliness

● Develop handover documentation to pass on the 

research for future work

● Turn existing code into simple toolbox solutions

Results So Far
● Improved architecture for hybrid QNNs

● Demonstrated functionality on MNIST dataset

● Developed two separate frameworks for handling 

multi-class datasets on a hybrid network

Toolbox Concept
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Results So Far (EXTRA)

Training on 2 digits
❏ High accuracy when comparing 

only two samples

❏ Operates well with simple 2 

qubit computers and sims

Training on all 10 digits
❏ Lower accuracy and extremely 

long training time


