Machine Learning for Breathing Pathology Detection with Emphasis on Bronchiectasis

Research Problem & Goal

0

Challenges

- Obtaining Databases
- Extracting Robust Features
- Real-time Operation

Working with Code

• Tensorflow Keras

 Simple Convolutional neural network with 3 layers

Adadelta Optimizer

Figure: Screenshot of section of algorithm used on a covid-19 data set to predict healthy from covid-19 positive patients.

Literature Review

- Problems with diagnosing Bronchiectasis
 - Bronchography is invasive
 - HRCT scans produce false negatives in children
- AI in healthcare and diagnostics
 - COVID-19, Parkinson's, TBI, Psychiatric conditions
- Limited research for use of audio signatures for detecting bronchiectasis

Methods

- Kaggle Respiratory Audio Database with 920 samples
- Spectral Estimation + Convolutional Neural Nets
- VGG-13 deep learning model
- Challenge: data is heavily biased
 with COPD

Bronchiectasis

Figure: Top image displays sample spectrogram of an audio signature from a patient with bronchiectasis. Bottom image displays sample spectrogram of audio signature from a healthy patient

Predicted label accuracy=0.8283; misclass=0.1717

Preliminary Results

Applying Focal Loss Function to reduce bias

-700

-600

- 500

400

300

200

100

- 0

	URTI -	0	8	8	2	3	0	0	2		-600
True label	COPD -	0	83	32	635	6	0	12	25		- 500
	LRTI -	0	0	1	0	0	1	0	0		
	Healthy -	0	9	7	2	13	0	2	2		400
	Asthma -	1	0	0	0	0	0	0	0		- 300
	Bronchiectasis -	0	20	0	0	0	0	0	1		200
	Bronchiolitis -	0	0	8	0	0	0	0	0		- 100
	Pneumonia -	0	4	1	18	0	0	13	1		
		URTI -	COPD -	LRTI -	Healthy -	- Asthma -	Bronchiectasis -	Bronchiolitis -	Pneumonia -		0
	accuracy=0.0946; misclass=0.9054										

Figure: Top left image displays distribution of data for Kaggle Respiratory dataset. Bottom left displays initial confusion matrix from VGG-13 model. Right image displays confusion matrix after applying loss function.

Final Results & Discussion

- Focus on Bronchiectasis
- Current Accuracy: 75%
- Ongoing work to continue tuning hyperparameters to increase accuracy

Figure: Image above displays confusion matrix once COPD data has been removed.

Next Steps and Future Work

- Report findings and publish
- Expand use of model to other respiratory ailments and datasets
- Consider implementation on a smartphone
- Develop software for use in clinical setting
- Investigate difference of accuracy compared to HRCT scans in children

Thank You!

Any questions?